

PostgreSQL 17 QuickStart Pro

Add expertise around WAL processing, JSON table, IO performance,

logical replication and index vacuuming

Tessa Vorin

Preface

PostgreSQL 17 QuickStart Pro is the definitive hands-on, practical book
for professionals at every level, from entry-level administrators to
seasoned experts. It provides rapid learning and practical implementation
of PostgreSQL 17, focusing on the latest features and best practices to
effectively manage, configure, and optimize PostgreSQL databases—and
it does so effectively.

The book begins by using the Titanic dataset to illustrate practical
examples of upgrade strategies, post-upgrade validation, and database
configuration. Next, it covers cluster administration, configuration
settings, and performance tracking. You will master the management of
permissions and roles through intricate role hierarchies, authentication
methods, and security settings. Next, we'll optimize server performance,
plan queries, and manage resources based on real performance data.

The next section dives deep into complicated data types, bulk data
operations, advanced indexing methods, and the creation of triggers and
functions, all with an emphasis on effective data management. Next, you
will learn about table partitioning strategies, performing physical and
logical backups, database restoration, and process automation using
BART. We then move on to streaming replication, where we will
configure, administer, and monitor replication to ensure optimal uptime.
Finally, we will explore point-in-time recovery, which allows us to restore
databases to specific points in time by replaying WAL logs. In short, this
book will equip database administrators with the knowledge and skills to
confidently handle PostgreSQL 17 databases.

In this book you will learn how to:

Upgrade and configure PostgreSQL 17, including post-upgrade validation
and configuration.
Learn PostgreSQL architecture, memory models, and cluster management.
Use hierarchical permissions, authentication, and security for advanced
role management.
Tune server performance with query planning, resource management, and
configuration tuning.
Effectively use PostgreSQL extensions, JSONB, and arrays.
Optimize queries with GIN, GiST, and BRIN indexing.
Master table partitioning for large dataset performance and scalability.
Automate physical and logical backups and confidently restore databases.
Manage PostgreSQL streaming replication for high availability and
automatic failover.
Restore data using WAL logs and Point-in-Time Recovery.

Prologue

Hi, I'm Tessa Vorin, and I'm thrilled to present my new book, "PostgreSQL
17 QuickStart Pro"! It's packed with all the tips and tricks I've picked up
along the way to help you get the most out of PostgreSQL 17 since its beta
version became available. This book offers a fantastic, hands-on approach
to learning all about PostgreSQL's newest features, optimization
techniques, and high-availability solutions. It's perfect for database
administrators of all experience levels!

I want you to feel like you're creating something truly special from the
very beginning! I've used the incredible Titanic dataset as a consistent
example throughout the chapters, and it's going to be a great way to
illustrate the concepts we're covering! I'm so excited to show you how
we'll use this real-world dataset to perform tasks you're likely to encounter
in your daily work! We're going to dive right in and start by focusing on
upgrading to PostgreSQL 17! I'll show you exactly how to upgrade your
system in the best way possible, with absolutely no stone left unturned! If
you're starting with version 15, you'll see exactly how to upgrade, validate
the setup, and reconfigure everything so it's production-ready—and it's
going to be amazing!

And now for something really exciting! We're going to go deep into
cluster administration. I guarantee that you will understand the inner
workings of the process and memory models that power PostgreSQL 17—
and it's going to be a wild ride! I've also included some really practical
examples for managing clusters, setting up multiple databases, and fine-
tuning your configurations for peak performance. Role management and

security have become absolutely vital components of database
management, and so here, I demonstrate how to design permissions and
manage users efficiently. We will also discuss row-level security,
authentication mechanisms such as LDAP and SSL/TLS integration, and
data compliance.

Another topic that I believe you should master is performance tuning. I'll
walk you through analyzing query execution plans with EXPLAIN and
EXPLAIN ANALYZE, allowing you to optimize queries based on the
performance insights they provide. We will look at memory management,
parallel queries, and configuration parameters such as work_mem and
shared_buffers. If you've been tasked with improving performance, this
section will provide immediate benefits that you can apply to your
existing setup. I've also included a chapter on managing complex data
types and also discussing important extensions such as pg_trgm and
hstore, to handle text searches and key-value stores.

I also emphasize table partitioning, wherein I show you to create
partitioned tables and manage them effectively using partition pruning and
maintenance techniques. Finally, no PostgreSQL installation is complete
without an effective backup and recovery strategy. I demonstrate how to
perform physical and logical backups, automate them with BART, and,
most importantly, use PITR to recover from accidental data loss or
corruption.

Throughout this book, you will learn how to manage streaming
replication, ensure high availability, and implement failover and
switchover procedures to keep your databases up and running. In this,
book, you will discover workable answers to common problems,

regardless of whether you are managing databases in simple, localized
settings or massive, enterprise-level empires.

Copyright © 2024 by GitforGits

All rights reserved. This book is protected under copyright laws and no
part of it may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without the prior written
permission of the publisher. Any unauthorized reproduction, distribution,
or transmission of this work may result in civil and criminal penalties and
will be dealt with in the respective jurisdiction at anywhere in India, in
accordance with the applicable copyright laws.

Published by: GitforGits

Publisher: Sonal Dhandre

www.gitforgits.com

support@gitforgits.com

Printed in India

First Printing: October 2024

For permission to use material from this book, please contact GitforGits at
support@gitforgits.com.

Content

Preface

GitforGits

Acknowledgement

Chapter 1: Upgrading and Setting up PostgreSQL 17

Brief Overview

Overview of PostgreSQL 17
Key Enhancements
Incremental Backup Support
Performance Optimizations for Queries
Enhanced Logical Replication
JSON Enhancements and SQL/JSON Support
Partitioning and Indexing Improvements
Impact of PostgreSQL 17 Upgrade on Existing Systems

Upgradation Strategies for PostgreSQL 17
Pre-Upgrade Assessments
Evaluate Current Database Version and Features
Assess Hardware and System Resources
Review Database Workloads
Backup the Database
PostgreSQL 17 Compatibility Check

Review Deprecations
Check Compatibility of Extensions
Database Drivers and Client Libraries
Deprecation Considerations
Configuration Deprecations
SQL Feature Deprecations
Pre-Upgrade Assessment Tools

Performing Upgrade

Prepare the System
Check Current PostgreSQL Version
Install PostgreSQL 17 Packages
Stop PostgreSQL Services
Prepare Data Directory
Backup Configuration files
Run pg_upgrade Command
Update Extensions
List Installed Extensions
Update Extensions
Handling Custom Extensions
Review Custom Configurations
Restore Configuration files
Security Configurations (pg_hba.conf)
Adjust New Parameters
Start PostgreSQL 17
Clean up Old PostgreSQL Version

Post-Upgrade Validation
Verifying Database Integrity
Run pg_upgrade Validation

Run Consistency Checks with CHECKSUMS
Verify Application-Specific Data Integrity
Analyze Database Performance
Check Logs for Errors or Warnings
Testing Application Compatibility
Test Application Connection
Test Application Features and Queries
Test Extensions and Plugins
Test Transaction Behavior

Test Backup and Restore Procedures
Conduct Load Testing

Setting up Titanic Database
Download Titanic Dataset
Importing Dataset into PostgreSQL
Create New Database
Import Titanic SQL file
Exploring Titanic Schema
Inspect Table Schema
Check Number of Records
View Sample Data
Understand Data Types and Constraints
Analyze Data Distribution

Summary

Chapter 2: Expert Database Cluster Administration

Brief Overview

Deep Dive into PostgreSQL Architecture
Background Workers
Extensions

Managing Database Clusters
Starting, Stopping, and Restarting Clusters
Starting a PostgreSQL Cluster
Stopping a PostgreSQL Cluster
Restarting a PostgreSQL Cluster
Managing Multiple PostgreSQL Clusters
Creating New Cluster
Specifying Different Port for each Cluster
Managing Multiple Clusters Simultaneously
Viewing and Listing Active Clusters

Removing a Cluster

Advanced Configuration Parameters
Fine-Tuning postgresql.conf
Memory Allocation Settings
Checkpoint Configuration
WAL Configuration
Parallelism Settings
Autovacuum Configuration
Configuring pg_hba.conf
Structure of pg_hba.conf
Configuring IP-Based Access Control
Implementing Secure Authentication Methods
Restricting Superuser Access
Setting up SSL Connections

Summary

Chapter 3: Advanced Database and Role Management

Brief Overview

Sophisticated Database Management
Recreating Titanic Database with a Template
Create a Custom Template Database
Recreate Titanic Database using a Template
Managing Schemas and Namespaces
Understanding Default Schema Behavior
Create and use Custom Schemas
Switching between Schemas
Managing Object Access between Schemas
Moving Objects between Schemas
Dropping Schemas

Role Hierarchies and Permissions

Sample Program: Role Hierarchies and Permissions
Defining Basic Roles
Creating Admin Role
Granting Permissions to Data Engineering Role
Granting Read-Only Permissions to Data Analyst Role
Granting Elevated Permissions to Admin Role
Role Inheritance and Group Roles
Creating Group Roles for each Team
Assigning Group Roles to Team Members

Assigning Role Inheritance to Group Roles
Testing Role Inheritance
Managing Role Privileges and Revoking Permissions

Authentication Mechanisms
Restrict Remote Access by IP Range
Restricting Superuser Access
Integrating LDAP
Integrating Kerberos Authentication
Configuring Kerberos in ‘pg_hba.conf’
Setting up PostgreSQL Server
Verifying Kerberos Authentication
Enabling SSL/TLS
Configuring SSL
Configuring ‘pg_hba.conf’ for SSL
Enforcing Client Certificates
Testing SSL Connections

Fine-Grained Access Control
Enabling Row-Level Security (RLS)
Implementing Row-Level Security Policies
Define a Policy for Data Engineers

Define a Policy for Data Analysts
Testing Row-Level Security Policies
Testing for Data Engineers
Testing for Data Analysts
Restricting Access Based on User Identity
Combining Multiple Policies
Managing Row-Level Security and Policies

Summary

Chapter 4: Configuration and Performance Tuning

Brief Overview

Optimizing Server Performance
Memory and Resource Allocation Strategies
Configuring Database Caching
Memory Allocation for Operations
Memory for Maintenance Tasks
Estimating Available Memory
Other Key Parameters for Optimizing Performance
Limiting Concurrent Connections
Adjusting Checkpoint Frequency
Tuning Write-Ahead Logging

Query Planning and Execution
Using EXPLAIN to understand Query Plans
Using EXPLAIN ANALYZE to Measure Query Performance
Using EXPLAIN to Optimize Complex Queries

Resource Management Techniques
Connection Pooling with pgBouncer
Installing pgBouncer
Configuring pgBouncer
Starting and Monitoring pgBouncer

Managing Workloads with pg_stat_statements
Enabling ‘pg_stat_statements’

Using ‘pg_stat_statements’
Resetting Statistics
Analyzing Slow Queries
Optimizing Queries based on Statistics

Logging and Auditing
Sample Program: Monitoring Passenger Data Queries
Enable Logging
Log All Queries
Log Long-Running Queries
Schema Changes Logging
Log Connection and Disconnections
Log Client Information
Reviewing the Logs
Sample Program: Auditing Access to Passenger Data
Installing pgAudit
Configuring pgAudit
Reviewing Audit Logs

Summary

Chapter 5: Effective Data Management

Brief Overview

Advanced Data Types and Extensions
Working with JSONB
Alter Table to Add JSONB Column
Inserting JSONB Data
Querying JSONB Data
Indexing JSONB Data

Working with Arrays

Alter Table to Add Array Column
Inserting Array Data
Querying Array Data
Manipulating Arrays
Working with Composite Types
Create Composite Type
Add Composite Type as a Column
Inserting Data into Composite Type
Querying Composite Types
Using ‘hstore’ and ‘pg_trgm’
Install and Enable ‘hstore’
Adding ‘hstore’ Data
Inserting Data
Querying ‘hstore’ Data
Install and Enable ‘pg_trgm’
Using ‘pg_trgm’ for Fuzzy Search
Creating Index for Fuzzy Search

Sophisticated Indexing Techniques
GIN (Generalized Inverted Index)
Creating GIN Index
Querying with GIN Index
Maintaining GIN Indexes
GiST (Generalized Search Tree)
Adding Geometric Data Column
Inserting Geometric Data
Creating GiST Index
Querying with GiST Index
BRIN (Block Range INdex)

Creating BRIN Index

Querying with BRIN Index
Maintaining BRIN Indexes
Index Maintenance and Monitoring
Monitoring Index Usage
Rebuilding and Removing Indexes

Constraints, Triggers, and Functions
Sample Program: Creating Complex Constraints
Adding a CHECK Constraint on Age
Adding a CHECK Constraint for Age and Ticket Type
Testing Constraints
Sample Program: Writing Advanced Triggers
Create the Log Table
Create a Trigger Function
Create the Trigger
Testing the Trigger
Sample Program: Designing Stored Functions
Create the Function
Using the Function
Creating a Function with Parameters
Combining Constraints, Triggers, and Functions
Add a Constraint for Ticket Price
Create a Trigger to Recalculate Revenue on Insert/Update

Summary

Chapter 6: Table Partitioning Strategies

Brief Overview

Partitioning Concepts

Implementing Partitioned Tables
Sample Program: Partitioning by Range
Creating a Partitioned Table

Creating Range Partitions
Inserting Data into the Partitioned Table
Querying the Partitioned Table
Sample Program: Partitioning by List
Creating a Partitioned Table
Creating List Partitions
Inserting Data into the Partitioned Table
Querying the Partitioned Table
Sample Program: Partitioning by Hash
Creating a Partitioned Table
Creating Hash Partitions
Inserting Data into the Partitioned Table
Querying the Partitioned Table

Managing Partitions Effectively
Sample Program: Adding Partitions
Add a New Range Partition for Infants
Verify the New Partition
Sample Program: Merging Partitions
Merge Partitions
Validate the Data Movement
Sample Program: Splitting Partitions
Create New Partitions for Age Groups
Move Data to the New Partitions

Drop the Old Partition
Verify the New Partitions

Optimizing Queries on Partitioned Tables
Sample Program: Partition Pruning in Range Partitioning
Query Without Partition Pruning
Partition Pruning in Action

Automatic Partition Pruning
Sample Program: Indexing Range-Partitioned Tables
Creating Indexes on Partitions
Querying with Indexed Partitions
Sample Program: Indexing List-Partitioned Tables
Creating Indexes on Partitions
Querying with Indexed Partitions
Sample Program: Indexing Hash-Partitioned Tables
Creating Indexes on Hash Partitions
Querying with Indexed Hash Partitions
Monitoring Query Performance
Using EXPLAIN ANALYZE
Monitoring Index Usage

Summary

Chapter 7: Backup and Recovery Best Practices

Brief Overview

Designing a Backup Strategy
RPO

RTO
Sample Program: Using pg_basebackup for Physical Backups
Physical Backup Overview
When to Choose Physical Backups?
Using ‘Pg_basebackup’
Sample Program: Using pg_dump and pg_restore for Logical Backups
Logical Backups Overview
When to Choose Logical Backups?
Using ‘pg_dump’ and ‘pg_restore’

Physical Backups with pg_basebackup

Consistent Backups with pg_basebackup
Basic Backup Command
Consistency with WAL files
Verifying the Backup
Streaming Backups for Large Databases
Streaming WAL files
Handling Large Databases during Backup
Handling Backups for Large Databases
Continuous Archiving and WAL Segments
Replication Slots for Streaming
Backing up to Remote Location

Logical Backups with pg_dump and pg_restore
Backing up Individual Schemas and Tables
Backing up a Specific Schema
Backing up a Specific Table
Backing up Multiple Tables
Restoring Backups with pg_restore
Restoring a Specific Schema

Restoring a Specific Table
Selective Restore from Full Backup
Overwriting Existing Data

Introducing BART
Key Features of BART
Installing BART
Installing BART
Configuring BART
Automating Backups and Restores with BART
Creating Full Backups
Creating Incremental Backups

Automating Backups with Scheduling
Restoring a Full Backup

Summary

Chapter 8: Streaming Replication and High Availability

Brief Overview

Setting up Streaming Replication
Physical vs. Logical Replication
Physical Replication
Logical Replication
Synchronous vs. Asynchronous
Asynchronous Replication
Synchronous Replication
Configuring Streaming Replication

System Setup
Configure Primary Server
Configure Standby Server
Verifying Streaming Replication

Managing Replication
Monitoring Replication Performance
Using ‘pg_stat_replication’
Using ‘pg_stat_wal_receiver’
Managing Replication Delays
Adjust WAL Settings
Increase Max WAL Senders and WAL Buffers
Tune Standby for Performance
Implement WAL Archiving and Retention
Handling Replication Conflicts
Monitor Replication Conflicts
Adjust ‘hot_standby_feedback’

Setting Timeout for Conflict Resolution

Failover and Switchover Procedures
Failover
Stop the Failed Primary
Promote the Standby Server
Verify Promotion
Using Virtual IPs (VIPs)
Updating Application Connection Strings
Switchover

Summary

Chapter 9: Point-in-Time Recovery

Brief Overview

WAL Archiving for PITR
Configuring WAL Archiving
Editing ‘postgresql.conf’
Creating Archive Directory
Testing Archive Command
Managing Archived WAL files
Viewing Archived WAL files
Implementing Retention Policies
Verifying WAL file Integrity
Storing WAL files in a Remote Location

Performing Point-in-Time Recovery
Restoring from Base Backups
Preparing Base Backup
Stop PostgreSQL Server
Remove Existing Data Directory
Extract Base Backup
Prepare WAL Replay

Applying WAL Segments
Setting Recovery Target
Specify the Recovery Target Time
Starting PITR Process
Monitoring Recovery Process
Completing the Recovery
Verifying the Recovery
Check the Database Logs

Run SQL Queries
Check the Recovery Time

Summary

Index

Epilogue

GitforGits

Prerequisites

As long as you are enthusiast to PostgreSQL and database administration
career, every single update to PostgreSQL technology must be obssessed
to you, and so this book too. If you are a DB professional, you must read
this book.

Codes Usage

Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you
have our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "PostgreSQL 17 QuickStart Pro by Tessa Vorin".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to
reach out to us at

We are happy to assist and clarify any concerns.

Chapter 1: Upgrading and Setting up PostgreSQL 17

Brief Overview

In this chapter, you'll learn how to upgrade an existing PostgreSQL
installation to version 17 and create a sample database for hands-on
exercises. The latest version of PostgreSQL, 17, has a number of
improvements that make it more scalable, practical, and fast. To benefit
from these enhancements, database administrators and engineers must first
understand the upgrade process. We'll start with a look at the new features
and improvements. You'll see how these changes can improve both day-to-
day operations and advanced database tasks.

Next, we'll show you the best ways to upgrade to PostgreSQL 17. This
section will show you how to plan an upgrade so that it runs smoothly and
does not disrupt critical operations. We'll look at different upgrade
methods, such as in-place and logical upgrades, and help you decide
which is best for your current setup and workload. After discussing
upgrade strategies, we will carry out the actual upgrade process. We will
provide a detailed, step-by-step walkthrough of upgrading from an earlier
version, addressing any potential issues that may arise along the way. I
will ensure that your database remains fully functional and optimized after
the upgrade. Finally, we will validate the upgrade to ensure that the
database is completely functional and optimized.

What follows is an instruction on how to create the Titanic sample
database. This database will be used to provide demonstrations throughout
the book. You'll use PostgreSQL 17 features and techniques in a real-
world scenario. The Titanic dataset provides a comprehensive example of
PostgreSQL data management and querying. The subsequent chapters
build upon it perfectly.

Overview of PostgreSQL 17

PostgreSQL has earned its reputation as one of the most reliable, flexible,
and powerful open-source relational database systems available today. It is
trusted by businesses of all sizes and industries, from startups to Fortune
500 companies, for its ability to handle a variety of complex data
structures, advanced queries, and workloads with ease. From technology
companies using it for real-time data analysis and transactional processing
to data-heavy industries like finance, healthcare, and e-commerce,
PostgreSQL empowers organizations to deliver robust, scalable, and
highly available database solutions. It continues this tradition of
empowering businesses by introducing key improvements in performance,
scalability, security, and usability.

With the rapid growth of data and the increasing complexity of modern
applications, the need for high-performance, efficient databases has never
been more critical. PostgreSQL 17 addresses these needs with new
features and optimizations aimed at enhancing performance, managing
large datasets, simplifying backup and recovery, and improving high
availability.

Key Enhancements

Incremental Backup Support

One of the standout features of PostgreSQL 17 is the introduction of
incremental a long-awaited enhancement for administrators managing
large-scale databases. Traditional backups in PostgreSQL required full
backups, which could be time-consuming and resource-intensive.
Incremental backups address this by only backing up the data that has
changed since the last backup, significantly reducing storage costs and
recovery times. This is especially beneficial for enterprise environments
that handle terabytes of data and where downtime can result in significant
financial losses. This new capability, integrated directly into PostgreSQL's
backup tooling, allows administrators to automate their backup strategies
more efficiently.

PostgreSQL 17 also introduces the new pg_combinebackup utility, which
facilitates the combination of base and incremental backups, further
streamlining the backup restoration process. These enhancements mean
that even in the case of a disaster recovery scenario, database
administrators (DBAs) can restore critical systems quickly without the
need for full system rebuilds, making PostgreSQL 17 an even more
attractive choice for enterprise-level operations.

Performance Optimizations for Queries

Performance has always been a core strength of PostgreSQL, and version
17 takes this even further with optimizations in query execution,
particularly for Common Table Expressions (CTEs) and UNION In
previous versions, PostgreSQL would materialize CTEs, leading to
inefficiencies in certain complex queries. PostgreSQL 17 improves this by
allowing the planner to inline CTEs, enabling better execution plans and
faster query processing, especially for larger datasets.

Additionally, PostgreSQL 17 brings improvements in how it handles IN
and EXISTS subqueries. These subqueries can now be pushed down to
foreign data wrappers, resulting in faster query execution when querying
remote data sources. This is especially useful in distributed database
environments or when integrating external systems into PostgreSQL.
Furthermore, the ability to leverage planner statistics in these scenarios
enables more efficient use of system resources, making complex queries
easier to manage even as data scales.

Enhanced Logical Replication

Another key feature is the improved logical replication capabilities, which
greatly benefit high availability and disaster recovery setups. Logical
replication, which allows for more granular control over data replication,
has been enhanced to allow logical replication slots to failover without
requiring re-synchronization of data. This improves failover time and
reduces downtime, which is critical in environments where database
availability is essential, such as financial services, e-commerce, and
healthcare systems.

Furthermore, PostgreSQL 17 introduces the pg_createsubscriber tool,
which simplifies the process of creating logical replication on a physical
standby server. By allowing logical replication slots to be managed more
flexibly, PostgreSQL ensures that DBAs can maintain high availability
even in the most demanding scenarios. These enhancements also improve
the ability to handle mixed workloads involving both physical and logical
replication, providing greater flexibility in how databases are structured
and managed across multiple servers.

JSON Enhancements and SQL/JSON Support

As JSON continues to be a popular format for handling semi-structured
data, PostgreSQL 17 builds on its already robust support for JSON by
introducing the JSON_TABLE feature. This feature allows JSON data to
be converted into standard PostgreSQL tables, making it easier for
developers and analysts to query JSON data using familiar SQL syntax.
This advancement simplifies the integration of non-relational data into
PostgreSQL, making it more versatile for applications that handle diverse
data types.

Additionally, PostgreSQL 17 adds support for SQL/JSON constructor
functions like and as well as query functions such as and These functions
allow for more powerful querying and manipulation of JSON data,
improving the developer experience and enabling more flexible data
workflows.

Partitioning and Indexing Improvements

Partitioning has long been a powerful feature in PostgreSQL, allowing
DBAs to manage large datasets more efficiently by splitting tables into
smaller, more manageable pieces. In PostgreSQL 17, the partitioning
system has been further enhanced, adding the ability to split and merge
This adds greater flexibility in managing partitioned data, particularly in
systems where data volume grows rapidly, such as time-series data or
event logging.

In addition to partitioning, PostgreSQL 17 introduces parallel index builds
for BRIN indexes, improving the performance of indexing operations on
large datasets. This feature allows multiple processes to build indexes

simultaneously, reducing the time required for index creation and
maintenance. The improved index handling also extends to B-tree indexes,
with PostgreSQL 17 offering better execution plans for queries involving
IN clauses, further boosting performance for complex queries.

Impact of PostgreSQL 17 Upgrade on Existing Systems

The upgradation to PostgreSQL 17 involves more than just installing the
new version; it requires careful consideration of the impact the new
features and configurations may have on your existing systems. One
significant change is the introduction of new configuration parameters that
must be properly managed to take full advantage of PostgreSQL 17's
enhancements. For example, the new incremental backup feature requires
configuring the backup strategy and storage to support incremental
backups and their corresponding pg_combinebackup utility.

In addition, DBAs upgrading to PostgreSQL 17 must consider the impact
of new WAL summarization features on their existing replication and
backup strategies. With the ability to track changed blocks in the WAL,
PostgreSQL 17 enables more efficient incremental backups, but this
requires a shift in how WAL logs are managed. Upgrading systems with
extensive replication setups will need to account for the new failover
capabilities in logical replication, ensuring that replication slots are
correctly configured to take advantage of the new features.

Furthermore, the security such as the new pg_maintain role and improved
event triggers for authentication, may require reconfiguring user roles and
permissions to align with the new maintenance framework. DBAs will
need to review their existing security policies and adjust them to ensure
compatibility with the new version. For example, the new sslnegotiation

parameter simplifies secure connections but may require changes in how
SSL certificates are managed across the system.

The introduction of incremental backups, enhanced logical replication,
performance optimizations for queries, and improved JSON handling, all
together positions the PostgreSQL as a robust solution for modern data
management challenges. While upgrading to PostgreSQL 17 does require
thoughtful planning, the benefits it brings in terms of scalability,
reliability, and flexibility make it well worth the effort for any
organization.

Upgradation Strategies for PostgreSQL 17

When planning an upgrade to PostgreSQL 17 on a Linux Ubuntu system,
it's essential to undertake pre-upgrade assessments and analyze potential
compatibility and deprecation considerations to ensure a smooth
transition. The upgrade process involves multiple layers, from the
database system itself to custom configurations, extensions, and
dependent applications. In the below, we will go through these preparatory
steps to avoid common pitfalls and ensure your system remains stable
throughout the upgrade.

Pre-Upgrade Assessments

Before proceeding with any upgrade, you must evaluate your current
PostgreSQL environment to understand how the upgrade will affect your
system. Pre-upgrade assessments help identify potential issues early on
and allow you to mitigate risks before beginning the process.

Evaluate Current Database Version and Features

Begin by determining the current PostgreSQL version in use. Depending
on how outdated your version is, there may be multiple versions between
your current setup and version 17. If you are running a significantly older
version (e.g., PostgreSQL 10 or earlier), you may need to account for
additional changes in intermediary versions (e.g., PostgreSQL 11–16).
These may include deprecations and changes in behavior that will impact
your upgrade to version 17.

To check your current PostgreSQL version, use the following command in
the terminal:

psql --version

Assess Hardware and System Resources

PostgreSQL 17 introduces performance improvements, but it also
introduces features like enhanced parallelism, which may increase system
resource utilization. Evaluate your hardware's current capacity—such as
CPU, RAM, and storage—to ensure that it can handle the new
requirements of PostgreSQL 17. While you do, ensure that memory-
intensive features like parallel index builds and better JSON handling may
consume more memory, depending on your workloads.

You may simply use htop and free to check system resources:

htop # for CPU and memory usage

free -h # for memory overview

If you find that system resources are constrained, you may think of scaling
your infrastructure before proceeding with the upgrade.

Review Database Workloads

You need to evaluate the workloads that are currently running on your
PostgreSQL instance. This includes:

● Types of queries executed (e.g., read-heavy vs. write-heavy).

● Use of features such as replication, indexing, partitioning, and
foreign data wrappers.

● Use of extensions and custom configurations (e.g., stored
procedures, triggers).

Workloads that rely heavily on these features might require additional
testing post-upgrade. Analyze query performance using
pg_stat_statements or run specific tests on query execution plans using the
EXPLAIN command to understand how performance might change in
version 17.

Backup the Database

While you upgrade, but never proceed to it without taking a full backup of
your existing database. PostgreSQL 17 introduces changes in the storage
format and metadata that are not reversible. You may use tools like

pg_basebackup for a physical backup or pg_dump for a logical backup,
depending on your database size and backup strategy.

For a physical backup:

pg_basebackup -D /path/to/backup -Fp -Xs -P

For a logical backup:

pg_dumpall > /path/to/dumpfile.sql

PostgreSQL 17 Compatibility Check

Review Deprecations

PostgreSQL 17 introduces a few important deprecations and changes that
could impact existing systems. It’s important to check your current setup
for usage of deprecated features or functionality that may be removed in
future versions.

pg_upgrade and Logical Replication: With PostgreSQL 17, logical
replication now offers better support for upgrading without dropping
replication slots. However, if you are coming from an older version where

this wasn't supported, you may need to update your logical replication
configuration.

Security Settings in pg_hba.conf: Ensure that any security settings defined
in pg_hba.conf are still valid. PostgreSQL 17 introduces more refined
access control features, and certain older methods or parameters may be
deprecated or improved, requiring adjustments.

Legacy Storage Engines: Some legacy storage options may see reduced
support or performance improvements. If your system relies on older
storage mechanisms, you should evaluate moving to newer options that
PostgreSQL 17 optimizes for.

Check Compatibility of Extensions

PostgreSQL is known for its extensibility, and many systems use
extensions to add custom functionality. Hence, you must review all
extensions currently installed on your database and ensure they are
compatible with version 17.

Some commonly used extensions include:

● pg_stat_statements

● pg_partman (for partition management)

● hstore and pg_trgm (for text indexing)

To check, use the \dx command in psql to list installed extensions and
their versions:

\dx

Many popular extensions, such as those for partition management and text
search, have been updated for better performance in version 17, but some
older ones may require manual intervention during the upgrade

Database Drivers and Client Libraries

The PostgreSQL ecosystem includes various drivers and client libraries,
such as psycopg2 (for Python) and pgx (for Go). If your application relies
on one of these libraries, ensure that the version you are using is fully
compatible with PostgreSQL 17. Now, failing to update drivers can result
in connection issues or unexpected behavior post-upgrade.

Deprecation Considerations

Configuration Deprecations

With PostgreSQL 17, some configuration parameters have either been
deprecated or replaced by new ones. For example:

ssl_renegotiation_limit: This setting has been deprecated. If your system
uses SSL renegotiation, you will need to revise your SSL settings and
adapt to the new method of handling secure connections.

unix_socket_directories: If you are still using the unix_socket_directory
configuration, it’s been renamed to unix_socket_directories in more recent
PostgreSQL versions. This change can affect environments that rely
heavily on Unix domain sockets for client connections.

Check your postgresql.conf file for deprecated parameters and update
them accordingly.

SQL Feature Deprecations

Functions that were deprecated in earlier versions (such as some old-style
hash functions) may no longer be available. If your application relies on
such functions, you will need to replace them with modern equivalents.
Also, review your schema and application code to ensure none of your
SQL queries rely on deprecated syntax or functions.

Pre-Upgrade Assessment Tools

There are several tools available to assist in pre-upgrade assessments and
compatibility checks. Following are:

pg_upgrade: A core PostgreSQL tool that helps you assess upgrade
compatibility and allows for a smoother transition from one version to
another.

● pg_dump: Useful for creating logical backups and testing the
portability of data structures.

or pg_upgradecheck: These tools provide additional insight into potential
compatibility issues, helping you address any problems before they occur.

A successful upgrade to PostgreSQL 17 can be yours if you take the time
to do these pre-upgrade checks and carefully examine compatibility
considerations.

Performing Upgrade

The upgrade process involves installing PostgreSQL 17 alongside the
existing version, transferring data, and ensuring that custom
configurations and extensions are properly handled. We will use
PostgreSQL’s built-in pg_upgrade tool for upgrading between major
versions while preserving existing data.

Prepare the System

Before starting the upgrade, verify the existing PostgreSQL version and
ensure that all services are running properly.

Check Current PostgreSQL Version

Run the following command to check your current PostgreSQL version (in
this case, version 15):

psql --version

The output should confirm that PostgreSQL 15 is installed and active.

Install PostgreSQL 17 Packages

Add the PostgreSQL repository for version 17 to your system and install it
alongside PostgreSQL 15. First, update the package lists:

sudo apt update

Then, add the PostgreSQL APT repository and install PostgreSQL 17:

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release
-cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'

wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc |
sudo apt-key add -

sudo apt update

sudo apt install postgresql-17 postgresql-client-17

This installs PostgreSQL 17 without interfering with your PostgreSQL 15
installation.

Stop PostgreSQL Services

To safely perform the upgrade, both PostgreSQL 15 and PostgreSQL 17
services must be stopped. This prevents any write operations during the
upgrade process and ensures data consistency.

sudo systemctl stop postgresql@15-main

sudo systemctl stop postgresql@17-main

Ensure that both services have stopped successfully by running:

sudo systemctl status postgresql

Prepare Data Directory

Next, wew use the pg_upgrade tool to handle the upgrade from
PostgreSQL 15 to PostgreSQL 17. pg_upgrade allows you to perform in-
place upgrades, where data is transferred directly from one version to
another.

Backup Configuration files

Before proceeding, back up the PostgreSQL 15 configuration files and to
ensure you have a record of the previous settings.

sudo cp /etc/postgresql/15/main/*.conf /path/to/backup/

Run pg_upgrade Command

The pg_upgrade command requires specifying the old and new data
directories and binaries. Typically, the data directories are located in

Then, run the following command to begin the upgrade process:

sudo -u postgres pg_upgrade \

 --old-datadir=/var/lib/postgresql/15/main \

 --new-datadir=/var/lib/postgresql/17/main \

 --old-bindir=/usr/lib/postgresql/15/bin \

 --new-bindir=/usr/lib/postgresql/17/bin \

 --link

After the above commands, the --link option speeds up the process by
creating hard links instead of copying files, significantly reducing the time
required for the upgrade, particularly for large datasets.

If any issues arise during the upgrade, pg_upgrade will provide detailed
error messages. You can resolve these errors based on the specific
message, such as missing files, permissions issues, or insufficient disk
space.

Update Extensions

Once the upgrade completes, you must ensure that all extensions installed
in PostgreSQL 15 are compatible with PostgreSQL 17. Common
extensions include and among others. Some extensions may require
upgrading their versions to work with PostgreSQL 17.

List Installed Extensions

Use the following command to list all installed extensions:

\dx

Update Extensions

For each extension, run the ALTER EXTENSION command to upgrade it
to the version compatible with PostgreSQL 17. For example, to upgrade
run:

ALTER EXTENSION pg_stat_statements UPDATE;

Repeat this for all installed extensions. If an extension is not yet
compatible with PostgreSQL 17, refer to the official documentation for the
extension or consider disabling it until an updated version is available.

Handling Custom Extensions

If you’ve installed any custom or third-party extensions, verify
compatibility by checking the extension’s documentation. Some may need
to be recompiled against the new PostgreSQL 17 libraries. You may
follow this process to rebuild them:

Download the source code for the extension.
Recompile the extension with PostgreSQL 17’s libraries.
Install the updated extension.

Review Custom Configurations

During the upgrade, the PostgreSQL configuration files and from version
15 are not automatically copied to the PostgreSQL 17 directory. You need

to manually review and reapply custom configurations to ensure that your
system continues to perform optimally.

Restore Configuration files

If you've made significant customizations to your configuration in
PostgreSQL 15, copy these settings over to the PostgreSQL 17
configuration files. Start by comparing the backed-up configuration files
against the default PostgreSQL 17 files.

For example, compare postgresql.conf from version 15 with the new
default:

sudo diff /etc/postgresql/15/main/postgresql.conf
/etc/postgresql/17/main/postgresql.conf

Apply any custom settings from the old configuration file to the new file,
ensuring compatibility with PostgreSQL 17’s features and parameters.

Security Configurations (pg_hba.conf)

Security settings in pg_hba.conf may also need review, especially if your
database handles external connections or specific authentication methods
like LDAP or SSL. Ensure that all authentication mechanisms defined in
PostgreSQL 15 are valid in version 17.

Open the pg_hba.conf file for PostgreSQL 17 and apply the necessary
changes:

sudo nano /etc/postgresql/17/main/pg_hba.conf

Adjust New Parameters

PostgreSQL 17 introduces new configuration parameters that weren’t
available in previous versions. For instance, if you are using replication
slots, the new sync_replication_slots parameter allows for synchronization
of replication slots during failover, which may improve high availability
setups.

If applicable, modify these settings to take advantage of PostgreSQL 17’s
improvements:

sudo nano /etc/postgresql/17/main/postgresql.conf

Start PostgreSQL 17

Once all configurations are in place and extensions have been updated,
start the PostgreSQL 17 service:

sudo systemctl start postgresql@17-main

Verify that PostgreSQL 17 is running and that the upgraded data is intact
by logging in:

psql -U postgres -d your_database

Check the PostgreSQL version again to confirm the upgrade:

SELECT version();

If everything is successful, PostgreSQL 17 should be fully operational.

Clean up Old PostgreSQL Version

After confirming that PostgreSQL 17 is running smoothly and all
extensions and custom configurations are functioning as expected, you
can safely remove PostgreSQL 15 to free up system resources.

Now, to remove PostgreSQL 15:

sudo apt remove postgresql-15

sudo rm -rf /var/lib/postgresql/15

With these instructions, upgrading from PostgreSQL 15 to PostgreSQL 17
will be simple, and you won't even notice a difference in how your
database operates, extensions, or preferences are handled.

Post-Upgrade Validation

Now that PostgreSQL 17 has been successfully upgraded, it’s important to
validate that everything is functioning correctly before resuming normal
operations. Now, this validation focuses on two key areas: verifying the
database integrity and testing application compatibility. These steps will
help confirm that your upgraded system is ready for production use as
below:

Verifying Database Integrity

After an upgrade, you must first ensure that the data has been transferred
correctly and that the integrity of your database is intact. Several tools and
checks can be used to perform this validation.

Run pg_upgrade Validation

After completing the upgrade, run:

sudo -u postgres ./analyze_new_cluster.sh

This script is generated by pg_upgrade and will execute ANALYZE on all
databases in your PostgreSQL 17 cluster. This helps the query planner

collect statistics and ensures optimal query performance. It also checks for
potential issues during the data migration.

Additionally, execute the following to remove the old cluster data,
assuming everything is successful:

sudo -u postgres ./delete_old_cluster.sh

This command removes the old PostgreSQL 15 data directory, ensuring
that there is no longer any dependency on the previous version.

Run Consistency Checks with CHECKSUMS

PostgreSQL offers the option of enabling checksums on data blocks to
detect corruption. If this feature was enabled in your previous setup, you
can use the following steps to ensure data consistency after the upgrade:

pg_verify_checksums -D /var/lib/postgresql/17/main

This tool checks for any data corruption in the database files, ensuring that
the upgrade did not result in any loss or corruption of data.

Verify Application-Specific Data Integrity

If your PostgreSQL installation is part of a larger application, you should
also perform application-specific integrity checks. This involves querying
the most critical tables to ensure that no data has been altered or lost
during the upgrade. You can use your application’s built-in data validation
tools if available, or you can run manual SQL queries to cross-check row
counts and data consistency between the old and new PostgreSQL
versions.

For example:

SELECT COUNT(*) FROM critical_table;

Now you compare this result to your pre-upgrade backups or logs. If you
see any discrepancies in row counts or data, explore further by analyzing
the logs and comparing data at a more granular level.

Analyze Database Performance

After verifying data integrity, it’s essential to analyze the database's
performance. PostgreSQL 17 introduces several performance
enhancements, but changes in query plans and optimizations can impact
performance, both positively and negatively.

Use the EXPLAIN and EXPLAIN ANALYZE commands to test the
performance of key queries:

EXPLAIN ANALYZE SELECT * FROM large_table WHERE condition;

This helps to understand whether queries are executing faster or if they
require further optimization post-upgrade. If certain queries perform
slower than expected, review the query plans and indexes.

Also, run pg_stat_statements to analyze query performance across the
entire database:

SELECT * FROM pg_stat_statements ORDER BY total_exec_time
DESC LIMIT 10;

This command identifies the most time-consuming queries, allowing you
to address any performance bottlenecks introduced by the upgrade.

Check Logs for Errors or Warnings

Review the logs using:

sudo tail -f /var/log/postgresql/postgresql-17-main.log

The PostgreSQL logs are an excellent source of information about
potential issues following an upgrade. Pay attention to warnings or errors
that appear after starting the PostgreSQL 17 server. After running the
above script, look for any messages related to failed queries, slow queries,
missing extensions, or security/authentication issues.

Testing Application Compatibility

Once the database integrity is confirmed, the next critical step is to ensure
that your applications work seamlessly with PostgreSQL 17. This is
particularly important if your application is tightly coupled with specific
PostgreSQL features or behaviors that may have changed in version 17.

Test Application Connection

Many applications use client libraries, such as libpq for PostgreSQL, to
interact with the database. These libraries must be compatible with
PostgreSQL 17. To do this,

Ensure that all application configuration files (e.g., connection strings,
authentication settings) point to the upgraded PostgreSQL 17 server.

Use application logs to check for any connection errors or warnings. If
necessary, update the PostgreSQL client libraries or drivers used by your
application (e.g., psycopg2 for Python or pgx for Go).

Test Application Features and Queries

The next step is to test your application’s functionality. This involves
running all critical operations that interact with the database, such as
creating, reading, updating, and deleting records. You need to pay very
particular attention to any features that rely on PostgreSQL-specific
features, such as stored procedures, triggers, and custom functions.

For this, review the query logs using:

SELECT * FROM pg_stat_activity;

This identifies any long-running or failed queries that could indicate
compatibility issues between the application and PostgreSQL 17.

Test Extensions and Plugins

As part of your application compatibility testing, ensure that all necessary
extensions are functioning correctly with PostgreSQL 17. For example, if
your application uses the pg_stat_statements extension to monitor query
performance, ensure that it’s correctly installed and updated.

You can check the status of installed extensions using:

\dx

If any custom extensions were used, confirm that they are compatible with
PostgreSQL 17 by testing the specific functions they provide. For
example, if using hstore for key-value storage, validate that this
functionality still works as expected in your application.

Test Transaction Behavior

Transaction handling is another critical area where compatibility issues
may arise. PostgreSQL 17 may handle some transactions differently,
particularly if new concurrency features are used.

SO, you need to ensure to test the following scenarios in your application:

● Long-running transactions

● Concurrent transactions that lock the same resources

● Complex transaction chains with rollbacks

After doing it, make sure that transaction handling works as expected and
that there are no issues with deadlocks, rollbacks, or unexpected behavior.

Test Backup and Restore Procedures

Since backup and restore functionality is vital for any production system,
ensure that your application’s backup and restore processes work correctly
with PostgreSQL 17. If your application uses pg_dump or pg_basebackup
for backups, test these tools post-upgrade to confirm that they still work as
expected.

For example, test a basic backup and restore with:

pg_dump mydb > backup.sql

pg_restore -d newdb backup.sql

After doing so, ensure that the restored data is complete and that no errors
occur during the process.

Conduct Load Testing

Finally, conduct load testing on your application to simulate real-world
usage. This helps identify potential bottlenecks or failures that may not
appear during normal functional testing. There are tools like pgbench that
can be used for this purpose.

For example, run a pgbench test to evaluate database performance under
load:

pgbench -i -s 50 mydb

pgbench -c 10 -j 2 -t 10000 mydb

Here, you monitor system resources and query performance during load
testing to ensure that PostgreSQL 17 can handle the expected workload.

All these validation steps ensure your PostgreSQL 17 upgrade is
successful and that your application remains compatible and performant
with the new version.

Setting up Titanic Database

Now that you have successfully upgraded to PostgreSQL 17 and validated
your system, it’s time to set up the Titanic sample database. The Titanic
dataset will be used throughout the book for practical demonstrations of
PostgreSQL features, configurations, and queries. In this section, we will
walk through importing the dataset into PostgreSQL 17 and exploring its
schema and data, so you become familiar with it for all the upcoming
exercises.

The Titanic dataset provides valuable information about passengers
aboard the RMS Titanic, including attributes like passenger class, age,
gender, and whether they survived. We will first teach you through
downloading and importing the titanic.sql file into your PostgreSQL
database, then show you how to explore its schema and content.

Download Titanic Dataset

You can download the Titanic dataset from the following GitHub
repository:

https://github.com/neondatabase/postgres-sample-
dbs/blob/main/titanic.sql

This dataset is stored in SQL format and contains the necessary commands
to recreate the Titanic table and populate it with data.

Importing Dataset into PostgreSQL

Once you’ve downloaded the titanic.sql file, follow these steps to import it
into your PostgreSQL 17 instance.

Create New Database

First, create a new database where you’ll store the Titanic data. Open your
PostgreSQL terminal (psql) and execute the following command to create
the database:

CREATE DATABASE titanic_db;

Switch to this new database:

\c titanic_db;

Import Titanic SQL file

Next, import the titanic.sql file into your newly created From the terminal,
navigate to the directory where the titanic.sql file is located, and use the
following command:

psql -U postgres -d titanic_db -f /path/to/titanic.sql

This command will execute all the SQL statements in the titanic.sql file,
creating the necessary table(s) and inserting the Titanic dataset into the
database.

Exploring Titanic Schema

Once the data is imported, it’s essential to understand the structure
(schema) of the Titanic database so you can work effectively with it
throughout the book. The Titanic dataset comprises a single table named
titanic with several columns representing different attributes of the
passengers.

Inspect Table Schema

To view the schema of the titanic table, use the \d command:

\d titanic

This will display the structure of the table, showing all the columns, their
data types, and any indexes or constraints. You should be able to see the
following columns:

● A unique identifier for each passenger.

Indicates whether the passenger survived (1 = survived, 0 = did not
survive).

● Passenger class (1st, 2nd, or 3rd class).

● The name of the passenger.

● The gender of the passenger.

● The age of the passenger.

● The number of siblings or spouses aboard the Titanic with the
passenger.

● The number of parents or children aboard the Titanic with the
passenger.

● The fare paid by the passenger.

Check Number of Records

To get a sense of the dataset's size, check how many records (rows) are in
the table:

SELECT COUNT(*) FROM titanic;

This will give you the total number of passengers recorded in the dataset,
which is around 887 passengers.

View Sample Data

Now that you understand the structure, we explore the actual data. You
can view a sample of the first few records using the SELECT command:

SELECT * FROM titanic LIMIT 10;

This command retrieves the first 10 rows of the titanic table, allowing you
to see actual passenger data, including names, ages, fares, and whether or
not they survived the disaster.

Understand Data Types and Constraints

Data The survived column uses an integer data type (1 or 0) to represent
survival, while other columns like name use text types, and age and fare
use numeric types.

Constraints: This table does not have foreign keys but may include some
basic constraints like NOT NULL and unique constraints on certain fields.
Inspecting these will help you understand the integrity of the data.

Analyze Data Distribution

Use the following SQL queries to analyze some key characteristics of the
dataset:

Survival Rate

SELECT survived, COUNT(*) FROM titanic GROUP BY survived;

This query will show how many passengers survived versus how many
did not.

Distribution of Passenger Class

SELECT pclass, COUNT(*) FROM titanic GROUP BY pclass;

This query provides insight into the distribution of passengers across
different classes (1st, 2nd, and 3rd class).

Gender Distribution

SELECT sex, COUNT(*) FROM titanic GROUP BY sex;

This query shows the ratio of male to female passengers in the dataset.

Age Distribution

SELECT age, COUNT(*) FROM titanic GROUP BY age ORDER BY
age;

This whole thing gives you an overview of the age distribution of the
passengers, which is useful for data analysis tasks. This setup is the basis
for all the practical exercises and hands-on demonstrations in the rest of
the book. It'll show you exactly how to apply PostgreSQL 17's features to
real-world datasets.

Summary

To summarize, we successfully upgraded PostgreSQL from version 15 to
17 and configured the Titanic sample database for future use. We started
by understanding the core improvements of PostgreSQL 17 and how they
affect existing systems, particularly those running Linux Ubuntu. We also
looked into how the upgrade would impact extensions, custom
configurations, and performance.

After laying the groundwork, we moved on to the more practical aspects
of upgrading, such as preparing the system, installing PostgreSQL 17, and
transferring data from PostgreSQL 15. We ensured that the old and new
data directories were handled correctly and that all extensions were
PostgreSQL 17 compatible. During the upgrade, we paid special attention
to key extensions such as pg_stat_statements and hstore.

We had imported the Titanic dataset, familiarized ourselves with its
schema and content, and were ready to go. We created a new PostgreSQL
database with the titanic.sql file and examined the table structure, which
included fields such as passenger class, age, fare, and survival status. We
used SQL queries to analyze the dataset and gain insights into data
distribution, which we will apply to future queries and optimizations.

In all, we learned all about PostgreSQL 17 and got ready to use the Titanic
dataset for real-world applications in the next chapters.

Chapter 2: Expert Database Cluster Administration

Brief Overview

In this chapter, we will master advanced techniques for managing
PostgreSQL database clusters and gain a deeper understanding of the
system's architecture. The chapter begins with an in-depth look at
PostgreSQL's internal processes and memory models. You will learn how
the database interacts with hardware resources and performs tasks like
query execution and data management.

We will then move on to managing PostgreSQL clusters. We will focus on
common administrative tasks such as starting, stopping, and monitoring
clusters, especially in environments with multiple PostgreSQL instances
running on a single server. This section will teach you how to control your
database clusters efficiently in both development and production
environments. Lastly, we will dive into advanced configuration parameters
that allow you to fine-tune PostgreSQL's behavior.

Deep Dive into PostgreSQL Architecture

PostgreSQL operates using a multi-process architecture where each client
connection is handled by its own process rather than a thread within a
single process. This design has been consistent across many PostgreSQL
versions, including PostgreSQL 17. While the architecture remains largely
the same in terms of how client connections are managed, PostgreSQL 17
has introduced some optimizations that enhance performance, especially
with memory management and process synchronization.

PostgreSQL 17 uses shared memory to store information that is required
for the coordination between different backend processes. The key shared
memory areas include buffer caches, transaction logs, locks, and process
synchronization information. Each PostgreSQL instance allocates a fixed
amount of memory during startup for shared memory, controlled by
parameters like Additionally, private memory is allocated per process for
work-specific operations, with parameters such as work_mem influencing
how much memory is used for sorting and other operations.

Now, compared to earlier versions, PostgreSQL 17 has introduced parallel
query enhancements that better utilize system memory and CPU cores for
complex queries, particularly those involving large datasets. The way
background processes handle shared memory has also been fine-tuned to
improve throughput in highly concurrent environments, enabling faster
index builds, more efficient write-ahead logging (WAL) processing, and
better query performance through parallel execution.

Background Workers

Background workers are essential processes in PostgreSQL. They perform
various maintenance and auxiliary tasks. These tasks include vacuuming
(removing dead tuples), writing logs to disk, handling replication, and
managing autovacuum processes. Starting with PostgreSQL 9.3, users
were able to define custom background workers, and this continues to be a
key feature.

PostgreSQL 17 introduces improvements in background workers to handle
more sophisticated tasks, including the improved handling of replication
slots and memory management for background jobs. Replication slots
help ensure that WAL segments needed for replication aren’t prematurely
removed, and PostgreSQL 17 now allows synchronization of replication
slots during failovers, improving high availability setups. Autovacuum
workers, responsible for cleaning up bloated tables and ensuring that
indexes are maintained, also see performance improvements in
environments with high data churn.

These background workers ensure that performance doesn’t degrade over
time, especially in databases with frequent insertions, updates, and
deletions. You can also monitor and adjust the behavior of these workers
through parameters in like and

Extensions

PostgreSQL 17 continues to support a rich ecosystem of extensions, many
of which have been updated to take advantage of new PostgreSQL 17
features. Some of the most common extensions include:

● Provides insights into query performance by logging execution
statistics.

● Allows key-value storage within a PostgreSQL database, providing
flexibility for semi-structured data.

Improves full-text search capabilities by using trigram indexing, making it
easier to perform fuzzy searches on text data.

The extension management process has been improved in this latest
version to support more sophisticated use cases. For instance, logical
replication slots, which are often used with replication and streaming
extensions, can now be synchronized across failover scenarios, allowing
for more robust high-availability deployments. This ensures that when
using extensions like pglogical (for logical replication), you maintain a
consistent and available system across multiple database

Managing Database Clusters

A database cluster in PostgreSQL refers to a collection of databases that
are managed by a single PostgreSQL server instance. In PostgreSQL,
managing clusters includes starting, stopping, restarting services, and
managing multiple clusters on the same machine. PostgreSQL allows the
creation and management of multiple clusters on a single server, which is
particularly useful when you need to isolate environments or run different
versions of PostgreSQL simultaneously.

Here, we will practice the starting, stopping, restarting clusters, and
managing multiple clusters in a PostgreSQL environment.

Starting, Stopping, and Restarting Clusters

In PostgreSQL, the management of database clusters is handled through
the system’s service manager, and since it is Ubuntu, this is typically Now,
each PostgreSQL cluster has its own service, which can be managed using

Starting a PostgreSQL Cluster

Starting a PostgreSQL cluster initiates the PostgreSQL server and makes
the databases within that cluster accessible. To start a PostgreSQL cluster,
use the following command:

sudo systemctl start postgresql@17-main

This starts the PostgreSQL 17 cluster and makes it ready for client
connections. After running this command, you can check the status of the
service to ensure it has started successfully:

sudo systemctl status postgresql@17-main

You should see output indicating that the cluster is running.

Stopping a PostgreSQL Cluster

Stopping a cluster gracefully shuts down the PostgreSQL server, ensuring
that all open transactions are completed before closing connections. Use
the following command to stop a PostgreSQL cluster:

sudo systemctl stop postgresql@version-main

For example, to stop a PostgreSQL 17 cluster:

sudo systemctl stop postgresql@17-main

Stopping a cluster prevents any new connections but allows existing
transactions to complete. If you want to stop the server immediately and
forcefully, you can use the -m immediate option:

sudo pg_ctlcluster 17 main stop -m immediate

This option is used in critical situations where the server needs to be shut
down quickly, but it may result in data loss for incomplete transactions.

Restarting a PostgreSQL Cluster

Restarting a PostgreSQL cluster is necessary when you make changes to
critical configuration files like postgresql.conf or Restarting a cluster
involves stopping and then immediately starting the PostgreSQL service.

To restart a PostgreSQL cluster, use the following command:

sudo systemctl restart postgresql@version-main

For example, to restart a PostgreSQL 17 cluster:

sudo systemctl restart postgresql@17-main

Restarting is necessary for applying configuration changes, but be aware
that active connections to the cluster will be terminated during the restart
process. Ensure that this operation is done during a maintenance window
or low traffic period if you are working with a production environment.

Managing Multiple PostgreSQL Clusters

PostgreSQL allows you to manage multiple clusters on the same machine,
which is useful when testing different configurations, running different
versions of PostgreSQL, or isolating environments (e.g., development,
staging, and production). Each cluster operates on its own port and
directory, ensuring isolation between clusters.

Creating New Cluster

To create a new PostgreSQL cluster, you can use the pg_createcluster
command. This command initializes a new cluster with its own data
directory and configuration files.

For example, to create a PostgreSQL 17 cluster named

sudo pg_createcluster 17 dev_cluster

By default, this will create a new cluster with its own data directory
(typically and configuration files located in

Specifying Different Port for each Cluster

Each PostgreSQL cluster must run on its own port. By default,
PostgreSQL listens on port 5432, but if you are running multiple clusters,
you need to assign a unique port to each one. To specify a different port
for the new cluster, modify the postgresql.conf file for the new cluster:

sudo nano /etc/postgresql/17/dev_cluster/postgresql.conf

Find the port setting and change it to a unique port number. For example:

port = 5433

Save the file and restart the cluster for the change to take effect:

sudo systemctl restart postgresql@17-dev_cluster

This ensures that the new cluster runs independently of any other clusters.

Managing Multiple Clusters Simultaneously

Once you have multiple clusters running, you can manage them
individually using the pg_ctlcluster command.

To start a specific cluster, for example:

sudo pg_ctlcluster 17 dev_cluster start

To stop the same cluster:

sudo pg_ctlcluster 17 dev_cluster stop

You can also check the status of a particular cluster:

sudo pg_ctlcluster 17 dev_cluster status

This command gives you control over individual clusters, ensuring that
you can manage them without disrupting other clusters running on the
same machine.

Viewing and Listing Active Clusters

If you have multiple clusters running on your system and want to view all
of them, you can use the pg_lsclusters command. This tool lists all active
PostgreSQL clusters, showing their version, name, status, and port.

pg_lsclusters

The output will look something like this:

Ver Cluster Port Status Owner Data directory Log file

17 main 5432 online postgres /var/lib/postgresql/17/main
 /var/log/postgresql/postgresql-17-main.log

17 dev_cluster 5433 online postgres /var/lib/postgresql/17/dev_cluster
/var/log/postgresql/postgresql-17-dev_cluster.log

This gives you an overview of all running clusters and allows you to track
which port each one is using.

Removing a Cluster

If you no longer need a specific PostgreSQL cluster, you can remove it
entirely from your system. For example, to remove the

sudo pg_dropcluster 17 dev_cluster

Be cautious when removing clusters, as this will permanently delete the
data stored in that cluster.

By using tools like and you can ensure that your PostgreSQL services run
smoothly and can be easily managed across various development, testing,
and production environments.

Advanced Configuration Parameters

In PostgreSQL, fine-tuning the postgresql.conf and pg_hba.conf files is
essential for optimizing performance and improving security. The
postgresql.conf file contains numerous parameters that affect database
performance, including memory usage, parallelism, and query execution,
while the pg_hba.conf file defines security-related settings such as client
authentication methods and access control.

We will now demonstrate how to configure these files to ensure optimal
performance and secure database access, following where we left off in
managing database clusters.

Fine-Tuning postgresql.conf

The postgresql.conf file holds the primary configuration parameters for
PostgreSQL and tuning this file, allows you to adjust PostgreSQL's
behavior based on your system's hardware resources and workload
requirements.

Below are some of the key parameters you can modify for improved
performance:

Memory Allocation Settings

Efficient memory management is critical to the performance of any
PostgreSQL instance, and it can be fine-tuned through parameters that

control the allocation of shared memory, work memory, and caching.

shared_buffers

This parameter defines how much memory PostgreSQL allocates for
caching data pages. For most systems, this value should be set to about
25% of the total system memory.

To set it, open postgresql.conf and adjust the value:

sudo nano /etc/postgresql/17/main/postgresql.conf

Modify the shared_buffers setting:

shared_buffers = 4GB # Set it to 4GB or about 25% of total memory

After setting this, restart the cluster to apply changes:

sudo systemctl restart postgresql@17-main

work_mem

This parameter controls the memory allocated for each operation (sorts,
hashes, etc.) in a query. For systems running complex queries with
multiple joins, this value should be higher.

Example:

work_mem = 64MB

This value is per operation, so setting it too high may cause memory
issues in environments with many concurrent queries.

maintenance_work_mem

This memory is used for maintenance tasks such as VACUUM and
CREATE Larger values improve the performance of these tasks,
especially for large databases.

For example:

maintenance_work_mem = 1GB

Checkpoint Configuration

PostgreSQL writes data to disk periodically in events called These ensure
data durability, but frequent checkpoints can degrade performance in
write-heavy environments.

checkpoint_completion_target

This setting controls the duration of checkpoints as a percentage of the
time between checkpoints. Increasing this value spreads out writes more
evenly over time, reducing the impact of checkpoints on performance.

For example:

checkpoint_completion_target = 0.9

checkpoint_timeout

Defines how often checkpoints are triggered, with larger intervals being
beneficial for reducing the frequency of I/O operations.

For example:

checkpoint_timeout = 15min

WAL Configuration

PostgreSQL uses WAL (Write-Ahead Logging) to maintain data integrity.
Tuning the WAL settings can greatly improve the performance of write-
heavy workloads.

wal_buffers

This parameter controls the amount of memory used to buffer WAL data
before it's written to disk. By default, PostgreSQL allocates a small value,
which may not be sufficient for high-performance systems.

For example:

wal_buffers = 16MB

max_wal_size and min_wal_size

These parameters define how much WAL data PostgreSQL keeps before
triggering a checkpoint. Increasing max_wal_size can help reduce the

frequency of checkpoints, improving performance during heavy write
periods.

For example:

max_wal_size = 2GB

min_wal_size = 1GB

Parallelism Settings

PostgreSQL 17 has improved support for parallel query execution, which
can significantly boost performance in multi-core systems. Configuring
parallelism settings enables PostgreSQL to better utilize your hardware for
complex queries.

max_parallel_workers_per_gather

Defines the maximum number of workers that can be used for parallel
queries. If your system has multiple CPU cores, increasing this value can
improve performance for large queries.

For example:

max_parallel_workers_per_gather = 4

max_worker_processes and max_parallel_workers

These settings control the total number of parallel worker processes
PostgreSQL can spawn. Adjust these values based on your hardware and
workload.

For example:

max_worker_processes = 8

max_parallel_workers = 8

Autovacuum Configuration

Autovacuum is a background process that helps maintain the health of
your database by removing dead tuples and preventing table bloat. Fine-
tuning autovacuum settings ensures that it runs efficiently without
impacting query performance.

autovacuum_vacuum_scale_factor

This parameter defines when autovacuum should trigger based on the
number of dead tuples. Lowering this value helps prevent table bloat,
especially in frequently updated tables.

For example:

autovacuum_vacuum_scale_factor = 0.1

autovacuum_naptime

Adjusts the delay between autovacuum runs. Shorter naptimes lead to
more frequent vacuuming.

For example:

autovacuum_naptime = 30s

Configuring pg_hba.conf

The pg_hba.conf (Host-Based Authentication) file controls client
authentication, specifying who can connect to the database, from where,
and which authentication method should be used. For maintaining a secure
PostgreSQL installation, proper configuration of pg_hba.conf is needed.

Structure of pg_hba.conf

The pg_hba.conf file uses a simple, line-by-line configuration format with
the following fields:

● The type of connection etc.).

● The database(s) for which the rule applies.

● The database user(s) affected by the rule.

● The client IP address or range that can connect.

● The authentication method used (e.g.,

For example, a basic rule might look like this:

TYPE DATABASE USER ADDRESS METHOD

host all all 192.168.1.0/24 md5

This rule allows any user from the 192.168.1.0/24 network to connect to
any database using MD5 password authentication.

Configuring IP-Based Access Control

To improve security, it’s important to limit connections to trusted IP
addresses or ranges. For example, to restrict access to only a specific
subnet:

host all all 10.0.0.0/24 scram-sha-256

This rule only allows users from the 10.0.0.0/24 network to connect using
the more secure scram-sha-256 authentication method.

To allow access from localhost only (for example, for a specific database
or user):

host mydb myuser 127.0.0.1/32 scram-sha-256

This ensures that only connections from the local machine can access
mydb as

Implementing Secure Authentication Methods

PostgreSQL supports several authentication methods. While methods like
md5 are still widely used, it is recommended to switch to more secure
options like especially for production environments.

To enforce scram-sha-256 for all connections:

host all all 0.0.0.0/0 scram-sha-256

This requires all users connecting from any IP address to use scram-sha-
256 authentication. Additionally, you can force local connections to use
more secure methods:

local all all peer

This ensures that local connections use peer authentication, which
leverages the operating system's user credentials for authentication.

Restricting Superuser Access

It is a best practice to restrict superuser (e.g., access to the database. You
can enforce rules in pg_hba.conf that limit access to superusers from
specific trusted machines or networks.

For example, restrict the postgres superuser account to only allow local
connections:

host all postgres 127.0.0.1/32 scram-sha-256

This prevents remote connections to the database using the superuser
account, ensuring tighter security.

Setting up SSL Connections

For secure, encrypted connections, PostgreSQL supports SSL/TLS. To
enforce SSL connections in you can specify the hostssl type:

hostssl all all 0.0.0.0/0 scram-sha-256

This ensures that all connections from any IP must use SSL and be
authenticated with connections over a secure, encrypted channel. It
ensures that all connections must be made using SSL and authenticated
securely with scram-sha-256`, providing a double layer of security.

Once you have made the necessary adjustments to the postgresql.conf and
pg_hba.conf files, you must restart the PostgreSQL service for the changes
to take effect. You can restart the cluster with the following command:

sudo systemctl restart postgresql@17-main

Verify that the service has restarted correctly without any errors by
checking the status:

sudo systemctl status postgresql@17-main

Additionally, review the PostgreSQL logs located in /var/log/postgresql/ to
ensure that the changes have been applied without any issues.

Summary

In conclusion, we demonstrated the most advanced techniques for
administering PostgreSQL clusters and how to fine-tune critical
configurations. We started the chapter with a detailed examination of
PostgreSQL's architecture, focusing on its process and memory models.
We also demonstrated the critical role of background workers in managing
autovacuum, replication, and logging tasks, ensuring seamless database
operations. We then moved on to the practical management of PostgreSQL
clusters, learning how to start, stop, and restart clusters using system
commands. Furthermore, we demonstrated how to manage multiple
clusters on a single system using commands like pg_ctlcluster to control
each instance individually. Each cluster can be assigned a unique port,
ensuring isolation between environments.

Finally, we explored advanced configuration options by fine-tuning the
postgresql.conf file to achieve optimized performance. We adjusted
memory allocation settings such as shared_buffers and work_mem,
configured checkpoints, and enabled parallelism for multi-core systems.
We enhanced security by configuring the pg_hba.conf file, restricting
access by IP address and enforcing secure authentication methods like
scram-sha-256. These practices ensured that the PostgreSQL instance was
both performant and secure for enterprise use.

Chapter 3: Advanced Database and Role Management

Brief Overview

In this chapter, we will master advanced techniques for managing
databases and user roles in PostgreSQL. I'm going to show you how to
create and manage databases using templates, schemas, and namespaces.
Once you understand these concepts, you will be able to structure your
databases more effectively, allowing for better organization and
management of large-scale data systems.

Next, you will master Role Hierarchies and Permissions. You will learn
how to define complex role structures and implement role inheritance and
group roles. We will then move on to authentication mechanisms, where
you will learn how to configure advanced authentication methods like
LDAP, Kerberos, and SSL/TLS in PostgreSQL. Finally, we will cover
fine-grained access control. You will gain an understanding of how to
implement row-level security and policies for data access. This gives you
precise control over which rows in a table user can view or modify,
providing an additional layer of security for your database.

Sophisticated Database Management

Managing databases efficiently involves more than just creating and using
them. It includes the ability to apply templates, define schemas, and
organize namespaces to enhance the flexibility and scalability of your
system. Here, we will recreate the Titanic database using a specific
template and demonstrate how to manage schemas and namespaces
effectively.

Recreating Titanic Database with a Template

A template in PostgreSQL is essentially a blueprint for new databases,
allowing you to predefine certain structures, tables, or settings that you
want to carry over to new databases. PostgreSQL comes with two built-in
templates by default: template0 and While template1 is often used as a
base, we can create custom templates for specific use cases.

In this demonstration, we will recreate the Titanic database, but we will
first explore how to create and use a different template.

Create a Custom Template Database

First, we create a custom template database. This could be a database with
some pre-defined settings or objects that we want to reuse for future
databases.

Connect to PostgreSQL using

psql -U postgres

Create a new database named template_titanic as a custom template:

CREATE DATABASE template_titanic;

Make sure to mark this database as a template by altering its properties:

UPDATE pg_database SET datistemplate = TRUE WHERE datname =
'template_titanic';

We can now add any specific configurations, extensions, or objects to this
database that we want future databases to inherit. For instance, we can add
some predefined settings, tables, or even extensions like

After setting up, we revoke all connect privileges to avoid any direct
connections to this template:

REVOKE CONNECT ON DATABASE template_titanic FROM
PUBLIC;

Recreate Titanic Database using a Template

Now that we have our custom template, we can use it to create our Titanic
database. The new database will inherit the schema and objects from

Drop the existing Titanic database (if needed):

DROP DATABASE IF EXISTS titanic_db;

Recreate the Titanic database using

CREATE DATABASE titanic_db TEMPLATE template_titanic;

At this point, the titanic_db is an exact copy of the template_titanic
database, including any predefined settings or objects you might have
added. You can now proceed to load the Titanic dataset or modify the new
database further.

Managing Schemas and Namespaces

Schemas provide a way to logically separate and organize database objects
such as tables, views, and functions within a database. This allows for
greater flexibility in managing complex systems where multiple teams or
applications may share a single database, but need distinct object spaces.

A namespace in PostgreSQL is effectively the same as a schema; it’s a
logical container for database objects. Multiple schemas can coexist
within a single database, allowing you to separate different types of data
or users without creating separate databases.

Understanding Default Schema Behavior

By default, PostgreSQL databases come with a schema called where all
tables and objects are placed if no other schema is specified. However, as
the database grows or you have multiple users or applications, you may
want to organize objects into different schemas.

We will explore the current schema setup in the Titanic database as
follows:

First, switch to the Titanic database:

\c titanic_db

List the current schemas in the database:

\dn

You should see the default public schema listed.

Create and use Custom Schemas

Next, we create a custom schema to organize our tables and other objects
more effectively. For example, we can create a schema specifically for
Titanic-related data.

Create a schema called

CREATE SCHEMA titanic_data;

Create a new table in the titanic_data schema instead of the default public
schema:

CREATE TABLE titanic_data.passengers (

 id SERIAL PRIMARY KEY,

 name VARCHAR(100),

 age INT,

 gender VARCHAR(10),

 survived BOOLEAN

);

This creates the passengers table within the titanic_data schema, instead of
the public schema.

Switching between Schemas

By default, PostgreSQL looks for tables and objects in the public schema
unless otherwise specified. If you have multiple schemas in your database,
you can change the search path to control which schema PostgreSQL
searches first.

To list the current search path:

SHOW search_path;

By default, the search path will include the public schema.

You can modify the search path to prioritize the titanic_data schema:

SET search_path TO titanic_data, public;

Now, when you run queries without specifying a schema, PostgreSQL will
first search in titanic_data and then in

For example:

SELECT * FROM passengers;

This query will now refer to the passengers table in the titanic_data
schema since it’s prioritized in the search path.

Managing Object Access between Schemas

Schemas can also be used to manage access control between different
database objects. For example, you might want to allow certain users to
read from a schema but restrict them from writing to it.

Create a new role or user:

CREATE USER titanic_user WITH PASSWORD 'password123';

Grant SELECT permission on the titanic_data schema to the new user:

GRANT USAGE ON SCHEMA titanic_data TO titanic_user;

GRANT SELECT ON ALL TABLES IN SCHEMA titanic_data TO
titanic_user;

This ensures that the titanic_user can read from the tables in the
titanic_data schema but cannot modify or create new objects within that
schema.

If needed, you can grant additional permissions, such as allowing the user
to create new tables in the schema:

GRANT CREATE ON SCHEMA titanic_data TO titanic_user;

Moving Objects between Schemas

Sometimes you might want to move tables or other objects between
schemas, particularly if you are reorganizing your database.

For example, to move the passengers table from the titanic_data schema to
the public schema:

ALTER TABLE titanic_data.passengers SET SCHEMA public;

This command moves the passengers table from the titanic_data schema
back to the public schema. Moving objects between schemas helps in
cases where you want to reorganize objects or adjust how different
schemas are utilized.

Dropping Schemas

If a schema is no longer needed, you can drop it. Be cautious, as this will
remove all objects within the schema.

To drop the titanic_data schema:

DROP SCHEMA titanic_data CASCADE;

The CASCADE option ensures that all objects within the schema are also
dropped. If you want to drop the schema but retain the objects, you must
first move them to another schema using ALTER

With the help of schemas and namespaces, objects can be logically
separated, which improves database organization, control of access, and
design flexibility. As you work with PostgreSQL in various use cases, this
knowledge will help you handle more complex database environments.

Role Hierarchies and Permissions

The management of user roles and permissions can become complex,
especially in environments where multiple users or applications require
varying degrees of access to different parts of the database. PostgreSQL’s
role-based access control system allows you to create role define group
and implement role inheritance to simplify user management and security.

Using the Titanic database, we will learn to practically define the complex
role structures, set up role inheritance, and manage permissions.

Sample Program: Role Hierarchies and Permissions

Consider the following scenario for managing access in the Titanic
database:

You have a data engineering team responsible for loading, transforming,
and updating data in the titanic_data schema.
A data analyst team needs read-only access to the tables in the titanic_data
schema for generating reports and querying data.
An admin role must oversee all operations, including managing roles,
creating schemas, and executing privileged operations.

In this situation, the goal is to:

● Define complex role hierarchies with appropriate permissions for
each group.

Implement role inheritance so that members of each team automatically
inherit the correct permissions.

Create group roles to simplify user management and ensure that
permissions are granted efficiently.

Defining Basic Roles

First, we will create basic roles for each user group: the data engineers,
data analysts, and administrators. To begin, create individual roles for the
data engineers and data These roles will not be directly assigned to users
yet but will be used to define permissions:

CREATE ROLE data_engineer NOLOGIN;

CREATE ROLE data_analyst NOLOGIN;

The NOLOGIN attribute means these roles are not used directly by users
for login but serve as group roles that other roles can inherit permissions
from. This simplifies permission management when dealing with multiple
users.

Creating Admin Role

Next, create the admin which will have more advanced privileges:

CREATE ROLE titanic_admin WITH LOGIN PASSWORD
'admin_password';

This role is assigned the LOGIN privilege, meaning it can be used by the
administrator to log into the database and manage users, roles, and
permissions.

Now that we have created the roles, we need to assign permissions that
match their responsibilities. In PostgreSQL, we can grant permissions on
specific database objects such as schemas, tables, and sequences. These
permissions include and USAGE (on schemas), among others.

Granting Permissions to Data Engineering Role

The data engineering team requires full access to the titanic_data schema,
including the ability to insert, update, delete, and select data. We will grant
those permissions:

GRANT USAGE ON SCHEMA titanic_data TO data_engineer;

GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN
SCHEMA titanic_data TO data_engineer;

The USAGE privilege allows the data_engineer role to access the schema,
while the other privileges and give full control over the tables within the
titanic_data schema.

Granting Read-Only Permissions to Data Analyst Role

The data analysts need read-only access to the same schema, meaning
they should only be able to run SELECT queries to retrieve data. Grant
them read-only access:

GRANT USAGE ON SCHEMA titanic_data TO data_analyst;

GRANT SELECT ON ALL TABLES IN SCHEMA titanic_data TO
data_analyst;

This setup ensures that the data_analyst role can only read data without
modifying it.

Granting Elevated Permissions to Admin Role

The admin role will oversee both teams and have higher privileges to
manage the entire database, including the ability to create schemas,
manage roles, and perform administrative tasks.

GRANT ALL PRIVILEGES ON SCHEMA titanic_data TO
titanic_admin;

GRANT CREATE ON DATABASE titanic_db TO titanic_admin;

GRANT ROLE data_engineer TO titanic_admin;

GRANT ROLE data_analyst TO titanic_admin;

This grants the titanic_admin role full privileges on the titanic_data
schema and allows the administrator to create new objects in the
titanic_db database. The administrator can also inherit permissions from
both data_engineer and giving them full control over all database
operations.

Role Inheritance and Group Roles

Roles can inherit permissions from other roles. This feature builds role
where higher-level roles automatically inherit the privileges of lower-level
roles. We will implement role inheritance so that individual team members
inherit permissions from their respective group roles.

Creating Group Roles for each Team

Group roles serve as a way to manage multiple users within a team
without assigning permissions to each user individually. Create group
roles for the data engineers and data analysts:

CREATE ROLE engineering_team INHERIT;

CREATE ROLE analyst_team INHERIT;

The INHERIT attribute means that users assigned to these group roles will
automatically inherit the permissions of the roles they are associated with.

Assigning Group Roles to Team Members

Next, assign specific users to the newly created group roles. Assume we
have two users: alice for the data engineers and bob for the data analysts.
For this, create the individual user roles:

CREATE USER alice WITH PASSWORD 'password123';

CREATE USER bob WITH PASSWORD 'password123';

Assign these users to their respective group roles:

GRANT engineering_team TO alice;

GRANT analyst_team TO bob;

Assigning Role Inheritance to Group Roles

Now, we can make the group roles inherit the privileges of the
data_engineer and data_analyst roles:

GRANT data_engineer TO engineering_team;

GRANT data_analyst TO analyst_team;

With this setup, all users assigned to engineering_team inherit the
privileges of the data_engineer role, and users in analyst_team inherit the
privileges of the data_analyst role.

Testing Role Inheritance

You can now test the role inheritance by logging in as alice and bob and
running some queries:

Log in as Alice:

psql -U alice -d titanic_db

Verify Alice’s permissions by running an INSERT query:

INSERT INTO titanic_data.passengers (name, age, gender, survived)
VALUES ('Alice Doe', 30, 'female', true);

Alice should be able to insert data into the table, as she inherits the
data_engineer role’s permissions. Now, do testing for Bob (data analyst):

Log in as Bob:

psql -U bob -d titanic_db

Verify Bob’s permissions by running a SELECT query:

SELECT * FROM titanic_data.passengers;

Bob should be able to query the data but not insert, update, or delete
records, as he inherits the read-only data_analyst role.

Managing Role Privileges and Revoking Permissions

With the database growing, you may need to adjust or revoke permissions
from specific users or roles. For example, if Alice moves to a different
team and no longer needs access to the Titanic database, you can revoke
her privileges:

REVOKE engineering_team FROM alice;

This immediately removes Alice from the engineering_team group, and
she will no longer inherit the permissions of the data_engineer role.

If needed, you can also revoke specific privileges from a role. For
instance, to prevent the data_analyst role from selecting from certain
tables:

REVOKE SELECT ON titanic_data.passengers FROM data_analyst;

With this, we have seen how to define complex role hierarchies and
manage permissions in PostgreSQL, using the Titanic database as an
example. We created distinct roles for data engineers, data analysts, and
administrators, assigned appropriate permissions, and implemented role
inheritance through group roles. This structure simplifies user
management and ensures that permissions are granted efficiently, while
still allowing for flexibility and control over who can access and modify
data in the database.

Authentication Mechanisms

We will configure pg_hba.conf to further control who can access the
Titanic database from remote hosts. We will set up rules for remote
connections, allowing access only from specific IP ranges and securing the
connection with a strong authentication method.

Restrict Remote Access by IP Range

If your database allows remote access, it’s important to restrict the IP
addresses that can connect. For example, if only users on the internal
network 192.168.1.0/24 are allowed to connect to you can add the
following line to

host titanic_db all 192.168.1.0/24 scram-sha-256

This rule allows any user from the internal network to connect to the
Titanic database using scram-sha-256 authentication, ensuring that all
communications are secure.

Restricting Superuser Access

To enhance security, it’s a good idea to restrict remote access for superuser
roles like You can restrict this account to local connections only,

preventing remote logins:

host all postgres 0.0.0.0/0 reject

This rule explicitly rejects any remote connection attempts from the
postgres superuser role, ensuring that this critical account is protected
from unauthorized access.

Integrating LDAP

LDAP (Lightweight Directory Access Protocol) is commonly used in
organizations for centralized authentication. PostgreSQL supports LDAP
integration, allowing database users to authenticate against an LDAP
server.

Now, to enable LDAP-based authentication, you need to modify the
pg_hba.conf file to include an ldap rule. For instance, we configure
PostgreSQL to authenticate Titanic database users via LDAP.

For this, in add the following:

host titanic_db all 192.168.1.0/24 ldap
ldapserver=ldap.gitforgits.com
ldapbinddn="cn=admin,dc=gitforgits,dc=com"

ldapbindpasswd=admin_password ldapsearchattribute=uid
ldapbasedn="dc=gitforgits,dc=com"

This rule allows users from the IP range 192.168.1.0/24 to authenticate
using their LDAP credentials. The key components here include:

● The hostname or IP of your LDAP server.

● The distinguished name (DN) used to bind to the LDAP server.

● The base DN to search for users in the LDAP directory.

Once the LDAP rule is in place, ensure that the users who need access to
the Titanic database have accounts in the LDAP directory. PostgreSQL
will authenticate these users by checking their credentials against the
LDAP server.

Integrating Kerberos Authentication

Kerberos is a network authentication protocol that uses tickets to allow
secure authentication over an insecure network. PostgreSQL supports
Kerberos integration for environments where Kerberos is the preferred
method of authentication.

Configuring Kerberos in ‘pg_hba.conf’

Now, to configure Kerberos authentication, you need to install and
configure a Kerberos server and ensure that PostgreSQL is configured to
use Kerberos tickets for authentication. In add a rule like the following:

host titanic_db all 192.168.1.0/24 gss include_realm=1
krb_realm=EXAMPLE.COM

Here,

● Specifies the use of Kerberos authentication.

● The Kerberos realm your PostgreSQL server is part of (e.g.,

● Determines whether the full Kerberos realm is included in the
authentication check.

Setting up PostgreSQL Server

Ensure that your PostgreSQL server is properly integrated with the
Kerberos infrastructure by configuring krb_server_keyfile in

krb_server_keyfile = '/etc/postgresql/krb5.keytab'

This keytab file stores the service principal and key that PostgreSQL will
use to authenticate with the Kerberos server.

Verifying Kerberos Authentication

Once Kerberos is configured, users can authenticate using their Kerberos
tickets. For instance, a user can request a Kerberos ticket with:

kinit username

Then they can connect to the PostgreSQL database without needing to
provide a password, as the ticket is used for authentication.

Enabling SSL/TLS

Here, securing the connections between PostgreSQL and clients over the
network is essential, especially when sensitive data is being transmitted.
PostgreSQL supports SSL/TLS to encrypt traffic and protect data in
transit.

Configuring SSL

To enable SSL, you need to configure PostgreSQL to use a certificate and
private key. In enable SSL and specify the certificate and key locations:

ssl = on

ssl_cert_file = '/etc/postgresql/ssl/server.crt'

ssl_key_file = '/etc/postgresql/ssl/server.key'

Make sure the certificate and key files are properly generated and
installed. The key file should only be readable by the PostgreSQL user for
security reasons:

chmod 600 /etc/postgresql/ssl/server.key

Configuring ‘pg_hba.conf’ for SSL

To enforce SSL connections in add a rule that requires SSL for all
connections. You can use the hostssl type to enforce SSL:

hostssl titanic_db all 0.0.0.0/0 scram-sha-256

This ensures that all connections to the Titanic database are encrypted
using SSL and authenticated using

Enforcing Client Certificates

For additional security, you can enforce client certificates for SSL
connections. This requires that clients present a valid certificate when
connecting to the PostgreSQL server. In add:

ssl_ca_file = '/etc/postgresql/ssl/ca.crt'

ssl_crl_file = '/etc/postgresql/ssl/crl.pem'

This ensures that only clients with certificates signed by your CA can
connect to PostgreSQL. You also need to adjust pg_hba.conf to require
client certificates:

hostssl titanic_db all 0.0.0.0/0 cert clientcert=1

With this rule, only clients with valid certificates can establish a
connection.

Testing SSL Connections

Once SSL is configured, you can verify that clients are connecting
securely by checking the PostgreSQL logs and using the psql command-
line tool:

psql "sslmode=require host=your_postgresql_server dbname=titanic_db
user=titanic_user"

By integrating advanced authentication mechanisms like LDAP, Kerberos,
and SSL/TLS, you can secure access to your PostgreSQL databases while
maintaining flexibility in user management.

Fine-Grained Access Control

Fine-grained access control allows you to control who can view or modify
specific data at a row level rather than just at a table level. PostgreSQL
offers Row-Level Security which lets you define policies to restrict access
to rows in a table based on specific conditions. This is particularly useful
when different users require access to subsets of data within the same
table. Continuing from where we left off in the previous section, we will
now implement row-level security and data access policies for the Titanic
database.

Enabling Row-Level Security (RLS)

Row-level security ensures that access to rows in a table is restricted
based on defined conditions. First, we need to enable RLS on a table
before defining policies. Here, we will start by enabling RLS on the
passengers table in the titanic_data schema.

First, connect to the Titanic database as an admin:

\c titanic_db

Enable row-level security for the passengers table:

ALTER TABLE titanic_data.passengers ENABLE ROW LEVEL
SECURITY;

With RLS enabled, no row-level policies are applied yet. Without explicit
policies, users can still access all rows in the table. Now, we will define
policies to control access based on specific conditions.

Implementing Row-Level Security Policies

RLS policies determine who can access or modify which rows based on
conditions you define. In our case, we will define two policies:

● Data engineers (with the data_engineer role) can view and modify
all passenger data.

Data analysts (with the data_analyst role) can only view rows where the
passenger’s age is above 18 (adult passengers).

Define a Policy for Data Engineers

Data engineers require full access to all rows in the passengers table. We
can define a policy that allows them to select, insert, update, or delete any
rows.

Create the policy for data engineers:

CREATE POLICY engineer_full_access ON titanic_data.passengers

FOR ALL

USING (true)

WITH CHECK (true)

TO data_engineer;

In the above, the USING clause defines a condition that must be met for a
user to access rows. In this case, we set it to allowing access to all rows
for users in the data_engineer role. Similarly, the WITH CHECK clause
ensures that engineers can modify all rows as well.

Define a Policy for Data Analysts

Data analysts should have read-only access, and they should only see rows
where the passenger is over 18 years old. We will define a policy that
restricts their access to these rows.

Create the policy for data analysts:

CREATE POLICY analyst_read_access ON titanic_data.passengers

FOR SELECT

USING (age > 18)

TO data_analyst;

In this policy, the USING clause restricts access to rows where the age is
greater than 18. This allows analysts to view only adult passengers, and it
applies only to SELECT queries (no modification privileges are granted).

Testing Row-Level Security Policies

Now that we have implemented row-level security policies for data
engineers and data analysts, we test these policies to ensure they work as
expected.

Testing for Data Engineers

Log in as a user with the data_engineer role (e.g.,

Connect to the Titanic database as Alice:

psql -U alice -d titanic_db

Run a query to select all rows from the passengers table:

SELECT * FROM titanic_data.passengers;

Since Alice is part of the data_engineer role, she should be able to see all
rows in the table.

Test data modification by inserting a new row:

INSERT INTO titanic_data.passengers (name, age, gender, survived)
VALUES ('John Doe', 35, 'male', true);

This insertion should be successful since the policy allows data engineers
full access to the table.

Testing for Data Analysts

Now log in as a user with the data_analyst role (e.g.,

Connect to the Titanic database as Bob:

psql -U bob -d titanic_db

Run a query to select all rows from the passengers table:

SELECT * FROM titanic_data.passengers;

Bob should only see rows where the age is greater than 18, as per the
policy we defined.

Test data modification by attempting to insert a row:

INSERT INTO titanic_data.passengers (name, age, gender, survived)
VALUES ('Jane Doe', 22, 'female', false);

This query should fail because Bob does not have INSERT privileges. The
policy restricts him to read-only access, and only for rows where age >

Restricting Access Based on User Identity

Row-level security policies can also be customized to meet various use
cases. We will implement a few more scenarios to demonstrate how
flexible RLS can be in PostgreSQL. If you want to restrict access based on
the logged-in user, PostgreSQL provides a special variable called
current_user that holds the name of the user currently connected to the
database. We will assume we want to restrict analysts so they can only
view the data they’ve entered.

First, alter the passengers table to include an entered_by column to track
the user who inserted each row:

ALTER TABLE titanic_data.passengers ADD COLUMN entered_by
VARCHAR(100);

Create a new policy that allows analysts to view only the rows they’ve
inserted:

CREATE POLICY analyst_own_data ON titanic_data.passengers

FOR SELECT

USING (entered_by = current_user)

TO data_analyst;

This policy restricts analysts to only viewing the rows where the
entered_by column matches their username.

Insert a row as an analyst (e.g.,

INSERT INTO titanic_data.passengers (name, age, gender, survived,
entered_by) VALUES ('Mark Smith', 29, 'male', true, current_user);

Now, Bob will only be able to see the rows he has inserted, and not rows
entered by other users.

Combining Multiple Policies

PostgreSQL allows you to combine multiple row-level security policies on
the same table. For instance, you can define one policy that restricts data
analysts to seeing only their own data, and another that restricts them to
seeing only rows where the passenger is over 18.

CREATE POLICY analyst_age_limit ON titanic_data.passengers

FOR SELECT

USING (age > 18)

TO data_analyst;

With both the analyst_own_data and analyst_age_limit policies in place,
analysts will only be able to see rows where the passenger’s age is over 18
and they entered the data themselves.

Managing Row-Level Security and Policies

You can manage your row-level security policies by listing, altering, or
dropping them as needed.

To do this, first list all policies on a table:

\d+ titanic_data.passengers

This command will display all policies applied to the passengers table. If
you want to modify a policy, you can use the ALTER POLICY command.
For example, to change the condition for the analyst_age_limit policy:

ALTER POLICY analyst_age_limit ON titanic_data.passengers USING
(age >= 21);

And, to remove a policy, use the DROP POLICY command. For example,
to drop the analyst_own_data policy:

DROP POLICY analyst_own_data ON titanic_data.passengers;

This level of access control is crucial for environments where users have
varying permissions or need restricted views of the data. The flexibility of
PostgreSQL’s RLS system allows you to tailor data access policies to meet
a wide range of use cases, ensuring security and proper data governance
across your database systems.

Summary

To sum up, we focused on advanced database and role management. We
got to grips with recreating the Titanic database using templates and
organizing data with schemas and namespaces. Next, we explored the
concept of role hierarchies and permissions. We created roles for different
teams, such as data engineers and data analysts, and assigned them
varying levels of access to the Titanic database. We showed how to use
role inheritance and group roles to make managing permissions much
more efficient.

We then moved on to authentication mechanisms, configuring advanced
settings in the pg_hba.conf file and integrating PostgreSQL with external
authentication services like LDAP, Kerberos, and SSL/TLS. Finally, we
implemented fine-grained access control using row-level security (RLS).
This chapter provided a comprehensive understanding of how to manage
roles, permissions, and security at a granular level in PostgreSQL.

Chapter 4: Configuration and Performance Tuning

Brief Overview

This chapter will focus on advanced PostgreSQL configuration and tuning
techniques for achieving optimal performance in various environments.
We'll start with Optimizing Server Performance, where you'll learn to fine-
tune PostgreSQL's core settings to make the most of your system's
hardware resources. This includes adjusting memory settings, parallelism,
and query performance parameters that directly impact how the server
handles large workloads.

Next, we will examine how PostgreSQL creates and executes query plans
in depth. You will learn how to use EXPLAIN and EXPLAIN ANALYZE
to understand query performance and make necessary optimizations. You
can improve execution times by understanding how the PostgreSQL
optimizer works and rewriting or adjusting queries as needed. You will
also learn how to manage system resources, including CPU and memory,
effectively. We will examine connection pooling with tools like
pgBouncer, handle high workloads with pg_stat_statements, and configure
settings like work_mem to optimize for different types of operations.

Finally, you will learn how to configure PostgreSQL's logging settings to
capture important performance and security data. This will include setting
up detailed logs for query performance analysis and configuring auditing
with pgaudit to monitor and track database activities for security and
compliance. This is the chapter that will equip you with the skills needed
to fine-tune and monitor your PostgreSQL instance effectively.

Optimizing Server Performance

So far, we have learned how to create and manage our Titanic database in
PostgreSQL, from setting up user roles and permissions to applying fine-
grained access controls through row-level security (RLS). We’ve also
explored authentication mechanisms and integrated our database with
external authentication systems like LDAP, Kerberos, and SSL/TLS. Now,
we shift our focus to ensuring that our PostgreSQL instance is running at
its peak performance by fine-tuning server settings. Understanding how to
optimize memory usage, configure key parameters, and manage system
resources is essential for maintaining a database that handles heavy
workloads efficiently.

Memory and Resource Allocation Strategies

In PostgreSQL, resource allocation, particularly memory impacts server
performance. The database engine uses a combination of shared memory
and local memory to handle everything from query execution to caching,
which determines how fast queries are processed and how effectively the
database can serve concurrent users. Poorly allocated memory can result
in slow query performance, excessive disk I/O, and bottlenecks in
throughput.

Key memory-related parameters that affect PostgreSQL performance
include and These settings allow us to allocate system memory effectively,
ensuring that queries run faster and overall performance is optimized.

Configuring Database Caching

The shared_buffers parameter defines the amount of memory PostgreSQL
allocates for caching data pages in memory. This memory is shared among
all the database connections and acts as a buffer between the database and
disk I/O. Configuring shared_buffers correctly is crucial because the more
data that can be cached in memory, the less PostgreSQL has to retrieve
from disk, leading to faster query execution.

For most production environments, a common recommendation is to set
shared_buffers to 25% of your system’s total memory. However,
depending on the workload and the amount of available RAM, this value
may be increased. Below, we will configure shared_buffers for our
PostgreSQL instance:

Open the postgresql.conf file:

sudo nano /etc/postgresql/17/main/postgresql.conf

Locate the shared_buffers setting and set it to 25% of your system's total
RAM. For example, if your system has 16GB of RAM, you can set:

shared_buffers = 4GB

Save the file and restart PostgreSQL for the changes to take effect:

sudo systemctl restart postgresql@17-main

This configuration allocates 4GB of memory for shared buffers, which
helps PostgreSQL reduce disk access by keeping more data in memory.

Memory Allocation for Operations

The work_mem setting controls the amount of memory allocated to each
individual operation, such as sorts, hash joins, and aggregations. Here,
note that work_mem is allocated per operation per query, meaning that a
high work_mem value can lead to excessive memory usage when multiple
operations are executed concurrently. Nw, to configure you need to
balance the trade-off between memory usage and performance. For
environments where complex queries with large sorts and joins are
common, increasing work_mem can speed up query execution.

Following is the example of how to configure

Open and locate the work_mem setting. For systems handling complex
queries but with a moderate number of concurrent users, a good starting
point might be 64MB:

work_mem = 64MB

This setting provides each operation with 64MB of memory, which
improves performance for sorts and joins without using too much system
memory.

Memory for Maintenance Tasks

The maintenance_work_mem setting is used for maintenance operations
such as CREATE and ALTER By default, PostgreSQL sets
maintenance_work_mem to a relatively low value, which may not be
sufficient for databases with large tables or heavy data insertion
workloads. For production environments, you can configure
maintenance_work_mem to around 10-20% of total memory to ensure that
maintenance operations are efficient.

To configure open the and set the maintenance_work_mem to a higher
value, such as 2GB, for larger databases:

maintenance_work_mem = 2GB

With this setting, PostgreSQL can use up to 2GB of memory for
maintenance tasks, allowing it to handle larger tables and complex

maintenance operations more efficiently.

Estimating Available Memory

While shared_buffers controls the memory allocated for caching within
PostgreSQL, the effective_cache_size parameter tells PostgreSQL how
much of the system’s memory is available for disk caching by the
operating system. This parameter doesn’t allocate memory directly, but it
helps PostgreSQL’s query planner estimate the amount of memory
available for caching data and making decisions on whether to use
indexes.

A common recommendation for effective_cache_size is to set it to 50-75%
of the system’s total RAM, which reflects the portion of the system
memory that the OS will likely use for disk cache. To do this, open and set
the value of For a system with 16GB of RAM, setting it to 12GB would
be appropriate:

effective_cache_size = 12GB

This configuration helps PostgreSQL’s query planner make better
decisions, especially when choosing between sequential scans and index
scans.

Other Key Parameters for Optimizing Performance

Beyond memory allocation, there are several other key parameters that
can significantly impact PostgreSQL performance, especially in high-
traffic or resource-constrained environments.

Limiting Concurrent Connections

The max_connections parameter controls the maximum number of
concurrent connections that can be made to the PostgreSQL instance. By
default, this value is set to 100, but in busy environments, you may want
to adjust this value to better suit your hardware resources.

If too many connections are allowed, each connection consumes memory,
which can lead to performance degradation. However, setting the value
too low can limit the system's ability to handle multiple users.

To adjust add the following in

max_connections = 300

Increasing the number of connections will allow more users to interact
with the database simultaneously, but it must be configured in conjunction
with memory allocation to prevent overuse of resources.

Adjusting Checkpoint Frequency

The checkpoint_completion_target parameter controls the rate at which
PostgreSQL writes these changes to disk, expressed as a percentage of the
time between checkpoints. A higher value spreads the I/O more evenly
and reduces performance spikes caused by checkpoints.

To do this, set the checkpoint_completion_target in

checkpoint_completion_target = 0.9

This setting instructs PostgreSQL to aim for completing 90% of the
checkpoint work in the available time, reducing the impact of sudden disk
I/O spikes.

Tuning Write-Ahead Logging

The wal_buffers parameter controls the amount of memory allocated for
buffering write-ahead log entries before they are flushed to disk.
Increasing this value is particularly helpful for write-heavy environments
where many transactions are being committed. The default value is often
too low for larger databases.

To configure add the following in

wal_buffers = 16MB

This setting allows PostgreSQL to handle a higher volume of transactions
before writing them to disk, reducing write overhead during busy periods.

By optimizing memory and resource allocation, we ensure that the server
performs is at its best, thereby reducing latency and maximizing the
throughput. These adjustments are good tunings for managing both routine
operations and complex queries in a production environment.

Query Planning and Execution

PostgreSQL’s query optimizer is a key component of the database system
that determines the most efficient way to execute a query. The optimizer
evaluates multiple possible execution plans and selects the one with the
lowest estimated cost. These costs are influenced by various factors, such
as the size of the tables, indexes, and statistics. The query planner
evaluates factors like joins, sorting, and filtering to estimate the most
efficient path for executing queries, making sure the database performs
optimally.

In this section, we will take a practical approach to understanding how
PostgreSQL’s query planner works using two essential tools: EXPLAIN
and EXPLAIN These tools help you visualize and analyze query
execution plans, giving you insights into how your queries are executed,
what resources are being used, and where optimizations can be made.

Using EXPLAIN to understand Query Plans

The EXPLAIN command provides a high-level overview of the execution
plan that PostgreSQL intends to follow for a given query. This execution
plan includes details about how data will be fetched, what indexes (if any)
will be used, and the estimated costs associated with each operation.

We will teach to make use EXPLAIN on a sample query for the Titanic
database, lets say for example, we want to fetch all passengers from the
passengers table who survived.

EXPLAIN SELECT * FROM titanic_data.passengers WHERE survived =
true;

The result will look something like this:

Seq Scan on titanic_data.passengers (cost=0.00..25.30 rows=120
width=70)

 Filter: (survived = true)

Here,

Seq Scan means PostgreSQL is performing a sequential scan of the entire
passengers table. This is often used when no indexes are available for the
query.
The two numbers represent the estimated start-up cost and total cost for
fetching the rows.
The optimizer estimates 120 rows will match the condition survived =
The width of each row (in bytes), which helps PostgreSQL determine the
memory usage for the query.

This sequential scan indicates that no index is being used, so the database
has to scan the entire table to find rows where survived =

Now, to improve the performance of this query, we can add an index on
the survived column. This will allow PostgreSQL to use an index scan
instead of a sequential scan, which can significantly reduce query
execution time for larger datasets.

Create an Index on the survived column:

CREATE INDEX idx_survived ON titanic_data.passengers (survived);

Run EXPLAIN again:

EXPLAIN SELECT * FROM titanic_data.passengers WHERE survived =
true;

The new output should look like this:

Bitmap Heap Scan on titanic_data.passengers (cost=4.21..12.33
rows=120 width=70)

 Recheck Cond: (survived = true)

 -> Bitmap Index Scan on idx_survived (cost=0.00..4.21 rows=120
width=0)

In the above sample,

PostgreSQL is now using an indexed scan to fetch the matching rows
more efficiently.
Bitmap index scan indicates that PostgreSQL is scanning the idx_survived
index to quickly find the rows where survived =
Costs and rows have changed, reflecting the reduced overhead due to the
use of an index.

This improvement shows how creating an index can make the query more
efficient by reducing the number of rows PostgreSQL needs to scan.

Using EXPLAIN ANALYZE to Measure Query Performance

While EXPLAIN shows the query execution plan and estimated costs, it
doesn’t provide actual runtime statistics. This is where EXPLAIN
ANALYZE comes in. It executes the query and provides both the
execution plan and real-time statistics, allowing you to see how long each
operation took and whether the query planner’s estimates were accurate.

To understand more better, we will run EXPLAIN ANALYZE on the same
query after adding the index:

EXPLAIN ANALYZE SELECT * FROM titanic_data.passengers
WHERE survived = true;

This will output something like:

Bitmap Heap Scan on titanic_data.passengers (cost=4.21..12.33
rows=120 width=70) (actual time=0.054..0.078 rows=120 loops=1)

 Recheck Cond: (survived = true)

 Heap Blocks: exact=15

 -> Bitmap Index Scan on idx_survived (cost=0.00..4.21 rows=120
width=0) (actual time=0.026..0.026 rows=120 loops=1)

 Index Cond: (survived = true)

Planning Time: 0.203 ms

Execution Time: 0.125 ms

Here, in addition to the execution plan, we also see actual execution times
and row counts:

The actual time=0.054..0.078 shows the time (in milliseconds) it took to
execute this part of the query.
The rows=120 field indicates how many rows were returned from the
query, matching the planner’s estimate.
The total execution time for the query is 0.125 a very fast query thanks to
the index.

Using EXPLAIN to Optimize Complex Queries

We will move on to a more complex query involving a join between
tables. We will use EXPLAIN to understand how PostgreSQL handles
joins and aggregates, and we will look for potential optimizations.

Here, we want to find the total fare paid by passengers who survived,
grouped by the class of travel

EXPLAIN SELECT pclass, SUM(fare) FROM titanic_data.passengers
WHERE survived = true GROUP BY pclass;

The output might look like this:

GroupAggregate (cost=25.30..26.33 rows=3 width=12)

 Group Key: pclass

 -> Sort (cost=25.30..25.60 rows=120 width=4)

 Sort Key: pclass

 -> Seq Scan on passengers (cost=0.00..20.20 rows=120 width=4)

 Filter: (survived = true)

In the above, we see a few important operations:

PostgreSQL is grouping the rows by pclass and aggregating the fare
values.
Before grouping, PostgreSQL sorts the rows by
The sequential scan still appears because no index is being used to filter
the rows where survived =

Now, to optimize this query, we will add an index on

CREATE INDEX idx_pclass ON titanic_data.passengers (pclass);

Now, re-run the query with

EXPLAIN SELECT pclass, SUM(fare) FROM titanic_data.passengers
WHERE survived = true GROUP BY pclass;

The result will show an improvement:

GroupAggregate (cost=5.45..6.48 rows=3 width=12)

 Group Key: pclass

 -> Bitmap Heap Scan on passengers (cost=4.33..5.45 rows=120
width=4)

 Recheck Cond: (survived = true)

 -> Bitmap Index Scan on idx_survived (cost=0.00..4.33 rows=120
width=0)

In addition, the use of EXPLAIN and EXPLAIN ANALYZE can identify
potential bottlenecks in query execution, such as:

Sequential scans are fine for small tables, but for large tables, consider
creating indexes to improve performance.
Queries that involve sorting or grouping can benefit from indexes that
match the GROUP BY or ORDER BY columns.

Resource Management Techniques

In this topic, we will implement connection pooling using pgBouncer and
monitor query performance using pg_stat_statements to handle workloads
effectively. These techniques help prevent overuse of system resources,
especially in environments with many concurrent users or heavy query
loads.

Connection Pooling with pgBouncer

When handling high numbers of client connections, managing resources
can become inefficient. This is where a lightweight connection pooler for
PostgreSQL, comes into play. It maintains a pool of active database
connections and reuses them, instead of opening a new connection for
each client request, and thereby significantly reduces overhead, especially
in environments with short-lived connections, such as web applications.

Installing pgBouncer

Install the pgBouncer package:

sudo apt-get install pgBouncer

Once installed, open the configuration file located in

sudo nano /etc/pgbouncer/pgbouncer.ini

Then, you’ll need to configure several key parameters for connection
pooling.

Configuring pgBouncer

Within the pgbouncer.ini file, configure the following settings:

Define the database that pgBouncer will manage. For example, to pool
connections for our

[databases]

titanic_db = host=localhost port=5432 dbname=titanic_db

Set the pooling mode. In most cases, transaction pooling is ideal as it
allows each client to reuse a connection during a transaction:

pool_mode = transaction

In this mode, pgBouncer allocates connections to clients only for the
duration of the transaction, returning the connection to the pool once the
transaction completes.

Then, configure the maximum number of connections pgBouncer will
manage:

max_client_conn = 1000

default_pool_size = 20

This allows pgBouncer to handle up to 1,000 clients but only opens 20
active database connections at a time.

Next, enable PostgreSQL authentication for pooled connections by setting
the authentication type and specifying the location of the password file:

auth_type = md5

auth_file = /etc/pgbouncer/userlist.txt

The userlist.txt file contains user credentials that pgBouncer will use to
authenticate incoming clients.

Starting and Monitoring pgBouncer

Start the pgBouncer service:

sudo systemctl start pgbouncer

You can monitor the pgBouncer pool using the following command:

psql -p 6432 -d pgbouncer -U postgres -c "SHOW POOLS"

This will provide insights into active client connections, pool size, and
pool utilization.

Managing Workloads with pg_stat_statements

This pg_stat_statements extension allows you to view the execution
statistics of all queries executed on the database, helping you identify slow
or resource-intensive queries and optimize them for better performance.

Enabling ‘pg_stat_statements’

Before using you must enable the extension in your PostgreSQL instance.

Open the postgresql.conf file, and enable the extension by adding the
following line:

shared_preload_libraries = 'pg_stat_statements'

Create the extension in the database:

CREATE EXTENSION pg_stat_statements;

Now, PostgreSQL is configured to track query execution statistics.

Using ‘pg_stat_statements’

To view query statistics, use the following query to analyze the top queries
by total execution time:

SELECT query, calls, total_time, rows, mean_time

FROM pg_stat_statements

ORDER BY total_time DESC

LIMIT 10;

Here,

The SQL query that was executed.
The number of times the query was executed.
The total time spent executing the query.
The average execution time of the query.

This will return a list of the most expensive queries, helping you identify
bottlenecks.

Resetting Statistics

To reset the statistics collected by run the following command:

SELECT pg_stat_statements_reset();

This is useful when you want to monitor performance over a specific
period without the influence of previous queries.

Analyzing Slow Queries

Assume, we discover that a particular query is slow. We can use
pg_stat_statements to get detailed information about it, and then use
EXPLAIN ANALYZE to check how PostgreSQL is executing the query.

Check below:

EXPLAIN ANALYZE SELECT * FROM titanic_data.passengers
WHERE survived = true;

You can see if indexes are being used, how long each part of the query
takes, and whether any parts of the query can be optimized.

Optimizing Queries based on Statistics

Once you’ve identified slow queries, you can take steps to optimize them:

If the query frequently filters by certain columns (e.g., create indexes to
speed up retrieval.

Consider rewriting the query to use more efficient joins, subqueries, or set
operations.
For complex queries that require sorting or joining large datasets, increase
work_mem to provide more memory for these operations.

For example, if a query like:

SELECT * FROM titanic_data.passengers WHERE pclass = 3 ORDER
BY fare DESC;

is identified as slow, then create an index on pclass and fare to
significantly speed up its execution:

CREATE INDEX idx_pclass_fare ON titanic_data.passengers (pclass,
fare);

This will reduce the execution time by allowing PostgreSQL to use an
index scan instead of a sequential scan.

By implementing pgBouncer for connection pooling, you can dramatically
improve PostgreSQL's ability to handle high concurrency without
overwhelming the system. In tandem, using pg_stat_statements provides
powerful insights into query performance, enabling you to monitor,

identify, and optimize slow or resource-intensive queries. Together, these
techniques ensure PostgreSQL instance remains performant even under
heavy loads.

Logging and Auditing

Logging helps track system performance, capture query execution details,
and identify issues, while auditing is crucial for compliance, allowing you
to track and review database activities, particularly related to security and
sensitive data. To understand better, we will design a scenario for the
Titanic dataset to demonstrate how logging and auditing can be configured
logically for real-world use cases. And, this implementation will help
monitor actions such as data access, changes to the schema, and any
suspicious behavior.

Sample Program: Monitoring Passenger Data Queries

Imagine that the Titanic database contains sensitive passenger
information, and it’s crucial to monitor when queries are executed against
the passengers table. You also want to track long-running queries that
might degrade performance.

To achieve this, we will configure PostgreSQL to log:

All queries executed on the passengers table.
Queries that take longer than a certain threshold (e.g., 500 milliseconds).
Any changes made to the schema, such as adding or modifying tables.

To set up logging, open the postgresql.conf file and modify the following
parameters:

Enable Logging

Ensure that logging is enabled.

log_destination = 'csvlog' # Output logs in CSV format

logging_collector = on # Enable the logging collector

log_directory = 'pg_log' # Directory for storing log files

log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log' # Log filename
pattern

Log All Queries

To capture all queries that touch the passengers table, enable query
logging.

log_statement = 'all'

This will log all SQL statements that are executed. However, for
production environments, this can be expensive in terms of disk space and

processing. In this case, consider using log_min_duration_statement to log
only long-running queries.

Log Long-Running Queries

Set a threshold for logging queries that take longer than 500 milliseconds.

log_min_duration_statement = 500 # Log queries that take longer than
500ms

This is useful for identifying queries that might need optimization.

Schema Changes Logging

To capture schema changes (such as or DROP operations), ensure
log_statement is set to ddl (Data Definition Language) operations.

log_statement = 'ddl' # Log schema changes

Log Connection and Disconnections

To track when users connect or disconnect from the database.

log_connections = on

log_disconnections = on

Log Client Information

Capture client information (IP address and port).

log_line_prefix = '%m [%p] %u@%d %r ' # Includes timestamp, PID,
user, database, and client IP

Once you’ve made these changes, restart PostgreSQL to apply them:

sudo systemctl restart postgresql@17-main

Reviewing the Logs

After logging is configured, PostgreSQL will create log files in the pg_log
directory. Each log entry will contain details like the query, the time it

took to execute, the client making the query, and the table being queried.
This provides detailed visibility into how the database is being used.

For example, an entry in the log might look like this:

2024-09-25 12:30:45.123 [1234] alice@titanic_db 192.168.1.100 LOG:
duration: 750 ms statement: SELECT * FROM titanic_data.passengers
WHERE survived = true;

This indicates that the query took 750 milliseconds to complete, which is
above our threshold of 500 milliseconds. This can help identify queries
that are slowing down the database.

Sample Program: Auditing Access to Passenger Data

While logging captures general database activity, auditing tracks specific
actions, particularly those related to security or compliance. The pgAudit
extension in PostgreSQL enables detailed auditing of database activities,
including queries, modifications, and access to sensitive data. This is
particularly useful for auditing data access in compliance with security
policies.

Here, we assume the following:

We need to audit any SELECT statements executed on the passengers
table because it contains sensitive passenger information.

We also want to audit any changes to the schema, such as creating,
modifying, or deleting tables in the titanic_data schema.

Installing pgAudit

To implement auditing,

First install pgAudit:

sudo apt-get install postgresql-contrib

Enable pgAudit by modifying the postgresql.conf file to load the
extension:

shared_preload_libraries = 'pgaudit'

Restart PostgreSQL to apply the changes, and create the pgAudit
extension in the Titanic database:

sudo systemctl restart postgresql@17-main

CREATE EXTENSION pgaudit;

Configuring pgAudit

Now that pgAudit is installed, we need to configure it to track specific
actions in the titanic_data schema, especially on the passengers table. To
audit SELECT statements and schema changes, we set the following
configuration:

Enable auditing for all read and write operations on the database:

SET pgaudit.log = 'read, write';

Audit all SELECT queries on the passengers table:

ALTER TABLE titanic_data.passengers ENABLE ROW LEVEL
SECURITY;

CREATE POLICY audit_passengers_policy

ON titanic_data.passengers

FOR SELECT

USING (true);

This ensures that any SELECT query on the passengers table is logged for
auditing purposes.

Reviewing Audit Logs

Once pgAudit is configured, all audited actions will be logged in the
PostgreSQL log files. For example, if a user selects data from the
passengers table, an audit entry might look like this:

2024-09-25 14:15:32.456 [2345] bob@titanic_db 192.168.1.105 AUDIT:
SESSION, 1, SELECT, TABLE, public.passengers, SELECT * FROM
public.passengers WHERE survived = true;

This log entry provides the following information:

When the query was executed.
User and The user connected to the Titanic database.
A SELECT statement was executed on the passengers table.

The exact query that was executed * FROM public.passengers WHERE
survived =

This allows administrators to track exactly who is accessing sensitive
passenger data, which is crucial for compliance with data protection
regulations.

We can also combine PostgreSQL’s logging capabilities with the pgAudit
extension to create a comprehensive monitoring and auditing framework.
And, it is considered to be particularly useful in environments with strict
compliance requirements, such as GDPR or HIPAA, where you need to
audit data access and modifications.

Summary

In summary, our objective was clear: optimize PostgreSQL for enhanced
performance and resource management. We started by learning how to
optimize the server's performance through memory and resource
allocation strategies. This included adjusting critical parameters such as
shared_buffers, work_mem, and maintenance_work_mem to ensure
efficient use of system resources and improve query execution times. We
then examined query planning and execution, using EXPLAIN and
EXPLAIN ANALYZE to understand how PostgreSQL's query optimizer
chooses execution plans. By analyzing query costs and execution times,
we swiftly identified and resolved potential bottlenecks, optimizing
queries by creating indexes and adjusting query logic.

Next, we implemented resource management techniques using pgBouncer
for connection pooling. Furthermore, we leveraged pg_stat_statements to
monitor and manage query performance, swiftly identifying and
optimizing slow-running queries for enhanced efficiency. Finally, we set
up advanced logging and auditing, focusing on tracking database activity
and security-related actions. We configured PostgreSQL's logging
capabilities to capture long-running queries and schema changes, and we
implemented pgAudit to monitor sensitive data access in the Titanic
database.

Chapter 5: Effective Data Management

Brief Overview

This chapter provides indispensable techniques for effective data
management. We start with Advanced Data Types and Extensions, where
you will master PostgreSQL's powerful data types, including JSONB,
arrays, and composite types. You will also learn about useful extensions
like pg_trgm for text search. Next, we'll dive into Bulk Data Operations.
You'll learn how to efficiently load, import, and manipulate large amounts
of data using commands like COPY. These operations are essential for
handling large datasets. You will also learn how to create and manage
advanced indexes like GIN, GiST, and BRIN indexes in our section on
sophisticated indexing techniques.

Finally, we will dive into constraints, triggers, and functions. You will
learn how to enforce data integrity through constraints, automate
processes using triggers, and build complex logic within your database
using functions. These tools are the key to intelligent database
management, ensuring that your data remains consistent and reliable
throughout its lifecycle.

Advanced Data Types and Extensions

Working with JSONB

PostgreSQL’s JSONB data type allows us to store JSON (JavaScript
Object Notation) data in a binary format, making it more efficient for
querying and indexing than the plain JSON data type. JSONB is
particularly useful when working with semi-structured data, such as log
data or API responses.

To understand better, we will add a new column to the passengers table to
store additional information about each passenger in a JSONB format,
such as their passport information and ticket

Alter Table to Add JSONB Column

ALTER TABLE titanic_data.passengers ADD COLUMN details JSONB;

Inserting JSONB Data

Now, we insert some data for one of the passengers. This JSONB object
will store their passport information and ticket details.

UPDATE titanic_data.passengers

SET details = '{"passport": "P123456", "ticket": {"type": "First-Class",
"price": 150.00}}'

WHERE id = 1;

Querying JSONB Data

To query data inside the JSONB column, PostgreSQL provides a variety
of operators and functions. For example, to find all passengers with a first-
class ticket:

SELECT name, details

FROM titanic_data.passengers

WHERE details -> 'ticket' ->> 'type' = 'First-Class';

In the above, -> is used to access a JSON object field, and ->> extracts the
field value as text. This query efficiently retrieves all passengers with a
ticket type of "First-Class."

Indexing JSONB Data

To optimize performance, especially when querying specific JSON fields
frequently, we can create a GIN (Generalized Inverted Index) on the
details column:

CREATE INDEX idx_passengers_details ON titanic_data.passengers
USING GIN (details);

This GIN index improves the performance of queries that search within
the JSONB column, making it faster to retrieve data like the example
above.

Working with Arrays

PostgreSQL arrays allow you to store multiple values of the same data
type in a single column. Arrays are useful when you need to represent a
list of items related to a single record, such as multiple phone numbers,
interests, or, in our case, the list of destinations for a passenger’s trip.

Here, we will add a column to the passengers table to store the multiple
destinations each passenger plans to visit.

Alter Table to Add Array Column

ALTER TABLE titanic_data.passengers ADD COLUMN destinations
TEXT[];

Inserting Array Data

Now, we insert data for a passenger who has multiple planned
destinations:

UPDATE titanic_data.passengers

SET destinations = ARRAY['Paris', 'New York', 'London']

WHERE id = 2;

The ARRAY[] syntax allows us to insert multiple values into the array
column.

Querying Array Data

To query passengers who are planning to visit a specific destination, we
can use the ANY operator:

SELECT name, destinations

FROM titanic_data.passengers

WHERE 'Paris' = ANY (destinations);

This query will return all passengers who have "Paris" listed in their
destinations array.

Manipulating Arrays

PostgreSQL provides array-specific functions for manipulation. For
example, if you want to add a new destination to a passenger’s array:

UPDATE titanic_data.passengers

SET destinations = array_append(destinations, 'Tokyo')

WHERE id = 2;

This appends "Tokyo" to the existing list of destinations.

Working with Composite Types

A composite type in PostgreSQL is a custom data type made up of
multiple fields, similar to a structured object in programming. Composite
types allow you to represent related data in a more structured format,
which is especially useful for representing objects with multiple attributes,
such as an address.

To do this, we will create a composite type to represent passenger
addresses, including fields like street, city, state, and zip code.

Create Composite Type

CREATE TYPE address AS (

 street VARCHAR(100),

 city VARCHAR(50),

 state VARCHAR(50),

 zip_code VARCHAR(10)

);

Add Composite Type as a Column

We can now add an address column to the passengers table using the
newly defined composite type:

ALTER TABLE titanic_data.passengers ADD COLUMN address address;

Inserting Data into Composite Type

We will insert data into this new column for a specific passenger:

UPDATE titanic_data.passengers

SET address = ('123 Main St', 'New York', 'NY', '10001')

WHERE id = 3;

In the above, the data for the composite type is passed as a tuple (set of
values).

Querying Composite Types

To retrieve data from the composite column, we can use dot notation to
access individual fields:

SELECT name, address.city, address.state

FROM titanic_data.passengers

WHERE id = 3;

This query will return the passenger’s name along with their city and state.

Using ‘hstore’ and ‘pg_trgm’

PostgreSQL supports several extensions that provide additional
functionality for working with specific data types. Two notable extensions
are hstore and

The hstore extension allows you to store key-value pairs in a single
column, making it an alternative to using JSON for certain use cases. It’s
particularly useful when you need a flexible schema that can
accommodate dynamic attributes for records.

Install and Enable ‘hstore’

Before using you need to install and enable the extension:

CREATE EXTENSION hstore;

Adding ‘hstore’ Data

Now, you want to store additional attributes for passengers, such as
dietary preferences or medical conditions. We can add an hstore column to
store this key-value data.

ALTER TABLE titanic_data.passengers ADD COLUMN preferences
hstore;

Inserting Data

To insert key-value pairs into the preferences column:

UPDATE titanic_data.passengers

SET preferences = 'diet' => 'vegetarian', 'medical' => 'none'

WHERE id = 4;

Querying ‘hstore’ Data

To query passengers with specific preferences, such as those with
vegetarian diets:

SELECT name, preferences

FROM titanic_data.passengers

WHERE preferences->'diet' = 'vegetarian';

The pg_trgm extension provides functionality for fuzzy text searching
using trigram similarity. This is particularly useful when you want to find
records based on partial matches, spelling errors, or approximate matches.

Install and Enable ‘pg_trgm’

First, enable the pg_trgm extension:

CREATE EXTENSION pg_trgm;

Using ‘pg_trgm’ for Fuzzy Search

We will implement a scenario where a user wants to search for passengers
with names that closely match "Jon Doe," even if there are minor spelling
variations.

SELECT name

FROM titanic_data.passengers

WHERE name % 'Jon Doe';

The % operator, provided by returns rows where the name is similar to the
provided string based on trigram similarity.

Creating Index for Fuzzy Search

To speed up the fuzzy search, create a GIN index on the name column:

CREATE INDEX idx_passengers_name_trgm ON titanic_data.passengers
USING GIN (name gin_trgm_ops);

This index optimizes searches that use the % operator, making them more
efficient for large datasets.

These advanced data types along with extensions are very easily able to
manage complex and unstructured data more efficiently. These tools
provide flexibility, enabling you to store, query, and manipulate data in
ways that suit various real-world applications.

Sophisticated Indexing Techniques

Indexing techniques can drastically reduce query execution times,
particularly when dealing with unstructured data, text search, or large
partitions. While B-tree indexes are the default and most commonly used,
PostgreSQL offers advanced indexing methods like and which are tailored
for specific data types and query patterns.

Here, we will experience these advanced indexing techniques and also
cover how to perform index maintenance and monitoring to ensure
database performance remains optimal over time.

GIN (Generalized Inverted Index)

GIN (Generalized Inverted Index) is a powerful indexing method for
handling multi-valued data, such as arrays, JSONB, or full-text search. It
allows you to search for elements within these complex data types
efficiently.

In our Titanic database, we previously added a details column in JSONB
format to the passengers table. We will now create a GIN index on the
details column to improve search performance when querying specific
fields within the JSONB data.

Creating GIN Index

To create a GIN index on the details JSONB column:

CREATE INDEX idx_passengers_details_gin ON titanic_data.passengers
USING GIN (details);

This GIN index allows PostgreSQL to efficiently search inside the JSONB
structure.

Querying with GIN Index

We will run a query to find all passengers who have a first-class ticket
stored in their

SELECT name, details

FROM titanic_data.passengers

WHERE details @> '{"ticket": {"type": "First-Class"}}';

The @> operator checks whether the JSONB object on the left contains
the key-value pairs specified on the right. The GIN index we created
accelerates this query by making it unnecessary for PostgreSQL to
perform a full table scan.

Maintaining GIN Indexes

Like other indexes, GIN indexes require regular maintenance to ensure
their efficiency. Over time, as data is inserted, updated, or deleted, GIN
indexes can become bloated, which may slow down query performance.
To address this, PostgreSQL provides the REINDEX command:

REINDEX INDEX idx_passengers_details_gin;

Running this command rebuilds the index, removing any bloat and
ensuring it remains efficient.

GiST (Generalized Search Tree)

GiST (Generalized Search Tree) is a flexible indexing framework that
supports a wide variety of data types, including geometric data, full-text
search, and range types. It is especially useful for indexing spatial data
and performing searches on non-exact matches, such as range queries or
similarity searches.

Now, we have a coordinates column in the passengers table that stores the
geographic location of passengers’ departure points. We can create a GiST
index on this column to speed up queries that involve spatial data.

Adding Geometric Data Column

First, we add a coordinates column to store passenger departure points as
geometric data (using the point data type):

ALTER TABLE titanic_data.passengers ADD COLUMN coordinates
POINT;

Inserting Geometric Data

We will insert some sample data for a passenger:

UPDATE titanic_data.passengers

SET coordinates = POINT(40.7128, -74.0060) -- Coordinates for New
York

WHERE id = 1;

Creating GiST Index

Now, we can create a GiST index on the coordinates column:

CREATE INDEX idx_passengers_coordinates_gist ON
titanic_data.passengers USING GiST (coordinates);

Querying with GiST Index

To find all passengers who departed from a location within 10 units of a
specific point, we can use a query like this:

SELECT name, coordinates

FROM titanic_data.passengers

WHERE coordinates <@> POINT(40.7128, -74.0060) < 10;

The <@> operator calculates the distance between two points, and the
GiST index optimizes this spatial query by quickly identifying points
within the specified range.

BRIN (Block Range INdex)

BRIN (Block Range INdex) is designed for very large, sequentially
ordered datasets. Unlike B-tree, GIN, or GiST indexes, which index
individual rows, BRIN indexes summarize entire blocks of data. This

makes them extremely space-efficient but suitable only for queries where
the data is naturally ordered, such as timestamps or sequential IDs.

Now, here think that the Titanic database contains a large number of
passenger records, and we want to create a BRIN index on the age
column, which is likely to be somewhat sequential. BRIN indexes are
ideal for cases where we don’t need precise row-level indexing but still
want to speed up range queries.

Creating BRIN Index

To create a BRIN index on the age column:

CREATE INDEX idx_passengers_age_brin ON titanic_data.passengers
USING BRIN (age);

This BRIN index summarizes blocks of data, significantly reducing
storage space while still improving query performance for large datasets.

Querying with BRIN Index

When querying passengers based on age ranges, BRIN indexes are highly
efficient. For example, to find all passengers aged between 30 and 50:

SELECT name, age

FROM titanic_data.passengers

WHERE age BETWEEN 30 AND 50;

BRIN will quickly narrow down the blocks that may contain rows
matching this condition, reducing the need to scan irrelevant data.

Maintaining BRIN Indexes

Although BRIN indexes are relatively maintenance-free compared to
other index types, it’s still a good practice to periodically use the
VACUUM command to ensure that the blocks remain compact and
properly summarized:

VACUUM ANALYZE titanic_data.passengers;

This ensures that the BRIN index continues to perform well, even as the
data grows.

Index Maintenance and Monitoring

Indexes requires regular monitoring and maintenance to ensure they don’t
degrade performance over time due to bloat or inefficient query patterns.
And, PostgreSQL provides several tools to monitor index usage and
maintain them effectively.

Monitoring Index Usage

PostgreSQL’s pg_stat_user_indexes view allows you to monitor index
usage statistics. This view provides information on how often each index
is used for queries, helping you identify unused or underused indexes that
may be candidates for removal.

To see how often each index on the passengers table is being used, run the
following query:

SELECT indexrelname, idx_scan, idx_tup_read, idx_tup_fetch

FROM pg_stat_user_indexes

WHERE relname = 'passengers';

Here,

The number of index scans (i.e., how often the index was used).
The number of rows the index helped retrieve.
The number of rows the index helped fetch from the table.

If an index has a low idx_scan value, it may not be useful, and you might
consider removing it.

Rebuilding and Removing Indexes

If an index has become bloated or inefficient, you can rebuild it using the
REINDEX command. However, if an index is rarely used, removing it
might improve overall database performance by reducing overhead.

To rebuild an index on the passengers table:

REINDEX INDEX idx_passengers_age_brin;

If an index is no longer useful, you can drop it:

DROP INDEX idx_passengers_details_gin;

This approach ensures that only useful indexes are kept, while
underperforming ones are either rebuilt or removed.

Constraints, Triggers, and Functions

and functions are powerful tools for enforcing data integrity, automating
database tasks, and embedding logic directly within the database. These
mechanisms allow you to maintain consistency, enforce business rules,
and handle complex workflows at the database level, without relying
entirely on external application logic. Now here, we will build upon the
previously demonstrated example to show how to create complex
constraints, write advanced triggers, and design stored functions.

Sample Program: Creating Complex Constraints

Constraints enforce rules at the database level, ensuring that only valid
data enters a table. PostgreSQL supports various types of constraints, such
as NOT and FOREIGN KEY constraints, which can be combined to
handle complex requirements.

In the Titanic dataset, we assume we want to ensure that:

The age column cannot contain negative values.
Children under the age of 16 cannot have a "First-Class" ticket.

We can accomplish this using a CHECK

Adding a CHECK Constraint on Age

To ensure that the age column contains only non-negative values:

ALTER TABLE titanic_data.passengers

ADD CONSTRAINT age_check CHECK (age >= 0);

This constraint ensures that no record with a negative age value can be
inserted.

Adding a CHECK Constraint for Age and Ticket Type

Next, we will add a constraint that ensures children under 16 do not have a
"First-Class" ticket. Assuming the ticket class is stored in the details
JSONB column:

ALTER TABLE titanic_data.passengers

ADD CONSTRAINT child_first_class_check CHECK (

 (details -> 'ticket' ->> 'type' != 'First-Class') OR (age >= 16)

);

This constraint enforces that either the passenger’s ticket is not "First-
Class" or their age is 16 or older.

Testing Constraints

To test this, try inserting a passenger with an invalid age or ticket class
combination:

INSERT INTO titanic_data.passengers (name, age, details)

VALUES ('Test Child', 12, '{"ticket": {"type": "First-Class", "price":
100.00}}');

This insert will fail due to the CHECK constraint, preventing invalid data
from entering the database.

Sample Program: Writing Advanced Triggers

Triggers are functions that are automatically executed (or “triggered”) by
specific events on a table, such as or DELETE operations. Triggers are
useful for automating tasks such as logging changes, enforcing additional
constraints, or updating related records.

Now, here consider that we want to log any changes to the passengers
table into a separate passenger_log table. This log should capture the old

and new data whenever a passenger’s details are updated.

Create the Log Table

First, create a passenger_log table to store changes:

CREATE TABLE titanic_data.passenger_log (

 log_id SERIAL PRIMARY KEY,

 passenger_id INT,

 old_data JSONB,

 new_data JSONB,

 changed_at TIMESTAMP DEFAULT NOW()

);

This table will capture the old and new data, along with the time the
change was made.

Create a Trigger Function

Next, write a trigger function that will log the old and new values
whenever a passenger’s details are updated:

CREATE OR REPLACE FUNCTION log_passenger_changes()
RETURNS TRIGGER AS $$

BEGIN

 INSERT INTO titanic_data.passenger_log (passenger_id, old_data,
new_data)

 VALUES (OLD.id, to_jsonb(OLD), to_jsonb(NEW));

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

This function will insert the old and new row data into the passenger_log
table every time an update is made.

Create the Trigger

Finally, create a trigger that executes this function before every update on
the passengers table:

CREATE TRIGGER passenger_update_trigger

BEFORE UPDATE ON titanic_data.passengers

FOR EACH ROW

EXECUTE FUNCTION log_passenger_changes();

Testing the Trigger

To test the trigger, update a passenger’s details:

UPDATE titanic_data.passengers

SET age = 25, details = '{"ticket": {"type": "Second-Class", "price":
100.00}}'

WHERE id = 1;

After executing this query, check the passenger_log table to see the old
and new data captured by the trigger:

SELECT * FROM titanic_data.passenger_log;

The log table will display the previous and updated data, allowing you to
track changes to the passengers table over time.

Sample Program: Designing Stored Functions

Stored functions in PostgreSQL allow you to encapsulate complex logic
and reuse it across multiple queries or triggers. Functions can return scalar
values, sets, or even custom types, making them highly versatile.

For this, we will create a stored function to calculate the total revenue
generated from ticket sales based on the ticket details stored in the JSONB
details column.

Create the Function

The following function will calculate the total revenue by summing up the
ticket prices from the passengers table:

CREATE OR REPLACE FUNCTION calculate_total_revenue()
RETURNS NUMERIC AS $$

DECLARE

 total NUMERIC := 0;

BEGIN

 SELECT SUM((details -> 'ticket' ->> 'price')::NUMERIC) INTO total

 FROM titanic_data.passengers;

 RETURN total;

END;

$$ LANGUAGE plpgsql;

This function extracts the price field from the JSONB details column,
converts it to a numeric value, and sums it across all rows in the
passengers table.

Using the Function

To calculate the total revenue, simply call the function:

SELECT calculate_total_revenue();

This will return the total sum of all ticket prices.

Creating a Function with Parameters

Next, we create a stored function that accepts a passenger ID and returns
the ticket price for that passenger. The following function retrieves the
ticket price for a given passenger ID:

CREATE OR REPLACE FUNCTION get_ticket_price(passenger_id INT)
RETURNS NUMERIC AS $$

DECLARE

 ticket_price NUMERIC;

BEGIN

 SELECT (details -> 'ticket' ->> 'price')::NUMERIC INTO ticket_price

 FROM titanic_data.passengers

 WHERE id = passenger_id;

 RETURN ticket_price;

END;

$$ LANGUAGE plpgsql;

To retrieve the ticket price for a specific passenger, call the function and
pass the passenger ID as an argument:

SELECT get_ticket_price(1);

This will return the ticket price for the passenger with ID 1.

Combining Constraints, Triggers, and Functions

We can also create powerful automation and validation rules within your
database, if we combine al these tools together. Given below is a final
example that combines constraints, triggers, and functions:

We will add a constraint that checks that the ticket price is not negative.

We will create a trigger that automatically recalculates the total ticket
revenue whenever a new passenger is added or updated.

● We will use the stored to compute the total ticket revenue.

Add a Constraint for Ticket Price

ALTER TABLE titanic_data.passengers

ADD CONSTRAINT ticket_price_check CHECK ((details -> 'ticket' ->>
'price')::NUMERIC >= 0);

Create a Trigger to Recalculate Revenue on Insert/Update

CREATE OR REPLACE FUNCTION update_total_revenue() RETURNS
TRIGGER AS $$

BEGIN

 PERFORM calculate_total_revenue();

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER revenue_update_trigger

AFTER INSERT OR UPDATE ON titanic_data.passengers

FOR EACH ROW

EXECUTE FUNCTION update_total_revenue();

Now, every time a passenger’s ticket details are added or updated, the
trigger will call the calculate_total_revenue function to recalculate the
total ticket revenue. The use of complex advanced and stored functions
automates intricate database processes, ensuring data integrity and
enforcing business rules directly within your PostgreSQL instance.

Summary

In a nutshell, we mastered the key aspects of effective data management in
PostgreSQL. We worked with advanced data types, bulk operations,
indexing techniques, and mechanisms to enforce data integrity. We started
by learning how to use advanced data types like JSONB, arrays, and
composite types. Next, we focused on bulk data operations, where we
mastered the efficient handling of large datasets. We learned how to
import or manipulate data using PostgreSQL's powerful commands in a
quick and effective manner. We also implemented sophisticated indexing
techniques using GIN, GiST, and BRIN indexes.

Finally, we automated database logic and enforced data integrity using
complex constraints, triggers, and functions. This chapter covered
essential skills for maintaining and managing PostgreSQL databases
efficiently, with a focus on practical implementations using the Titanic
dataset.

Chapter 6: Table Partitioning Strategies

Brief Overview

In this chapter, we will master table partitioning strategies in PostgreSQL.
We will start by grasping the concepts of partitioning, seeing how it works
in PostgreSQL, and understanding the benefits it offers, including
improving query response times and reducing maintenance overhead.

Next, we will show you exactly how to implement partitioned tables. You
will learn the ins and outs of different partitioning methods, including
range, list, and hash partitioning. You will also learn how to apply these
methods to real-world scenarios, including how to partition the Titanic
dataset based on attributes like age or ticket class. We will then move on
to managing partitions effectively, which includes tasks like adding,
removing, or merging partitions as the dataset grows. You will also learn
how to maintain partitions by reorganizing or cleaning up unused data,
ensuring that your database runs efficiently.

Finally, we will optimize queries on partitioned tables. You will learn how
PostgreSQL performs partition pruning, an optimization technique that
skips irrelevant partitions, speeding up queries. We will also show you the
best indexing strategies for partitioned tables, ensuring that even complex
queries run quickly.

Partitioning Concepts

In PostgreSQL 17, partitioning has received notable updates, further
enhancing its flexibility and management capabilities. One of the most
significant improvements is the introduction of partition merging and This
allows administrators to manage partitions more effectively by either
combining partitions when they grow too small or splitting them when
they become too large. For example, a partitioned table holding data from
several years can now have a year-based partition split into quarters,
improving performance when querying recent data. Similarly, merging
partitions with low activity helps reduce overhead. These operations are
achieved using the new ALTER TABLE ... SPLIT PARTITION and
ALTER TABLE ... MERGE PARTITIONS

Additionally, PostgreSQL experts have been discussing the benefits and
trade-offs of partitioning strategies in this latest version. While
partitioning is primarily viewed as a performance optimization technique,
it is also increasingly recognized for simplifying data management in large
databases. Experts have highlighted that partitioning can reduce the size of
indexes, improve query planning by enabling partition pruning, and
facilitate better management of large datasets over time. However, they
also note that careful planning is essential to avoid unnecessary locking
during partition management operations like splits and merges, which
could temporarily block access to the parent table.

Implementing Partitioned Tables

Partitioning in PostgreSQL allows large tables to be broken down into
smaller, more manageable parts called partitions. These partitions improve
performance by enabling PostgreSQL to scan only the relevant sections of
a table, rather than the entire dataset. Partitioning is particularly useful for
large datasets like the Titanic passenger data, which can benefit from
better query performance and easier maintenance.

Here, we will implement and Hash partitioning on the Titanic dataset,
illustrating how each method can be applied depending on the data and the
queries being run.

Sample Program: Partitioning by Range

Range partitioning divides a table into partitions based on a range of
values in a specified column. This method is ideal when you have data
that naturally falls into specific ranges, such as dates, ages, or numerical
values.

We will partition the Titanic dataset by the age of the passengers, placing
passengers in different partitions based on age ranges. This can help
optimize queries that frequently filter passengers by age.

Creating a Partitioned Table

First, create a partitioned table for the passengers dataset, specifying the
age column for range partitioning:

CREATE TABLE titanic_data.passengers_partitioned (

 id SERIAL PRIMARY KEY,

 name VARCHAR(100),

 age INT,

 gender VARCHAR(10),

 survived BOOLEAN,

 details JSONB

) PARTITION BY RANGE (age);

This command creates the base passengers_partitioned table, but it doesn’t
contain any data. We will now create partitions that will hold data within
specific age ranges.

Creating Range Partitions

We will create partitions for passengers based on age ranges:

A partition for passengers under 18 (children).
A partition for passengers between 18 and 60 (adults).
A partition for passengers above 60 (seniors).

CREATE TABLE titanic_data.passengers_children PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (0) TO (18);

CREATE TABLE titanic_data.passengers_adults PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (18) TO (60);

CREATE TABLE titanic_data.passengers_seniors PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (60) TO (150);

Inserting Data into the Partitioned Table

When inserting data, PostgreSQL automatically places each row in the
appropriate partition based on the age value:

INSERT INTO titanic_data.passengers_partitioned (name, age, gender,
survived, details)

VALUES ('John Doe', 25, 'male', true, '{"ticket": {"type": "First-Class",
"price": 100.00}}'),

 ('Jane Doe', 12, 'female', false, '{"ticket": {"type": "Second-Class",
"price": 50.00}}'),

 ('Emily Smith', 65, 'female', true, '{"ticket": {"type": "First-Class",
"price": 200.00}}');

PostgreSQL will place each row into the appropriate partition: or

Querying the Partitioned Table

When running queries that filter by age, PostgreSQL will use partition
pruning to scan only the relevant partition, improving performance. For
example:

SELECT * FROM titanic_data.passengers_partitioned WHERE age
BETWEEN 18 AND 60;

This query will only scan the passengers_adults partition, skipping the
other partitions, thus reducing the query execution time.

Sample Program: Partitioning by List

List partitioning allows you to partition a table based on a discrete set of
values. It is useful when you have a limited number of distinct values in a
column, such as categories or types.

We will partition the Titanic data based on the ticket class This method is
ideal for queries that filter data by ticket class, such as analyzing survival
rates by class.

Creating a Partitioned Table

First, create a partitioned table that will hold passengers based on their
ticket class, stored in the details JSONB field:

CREATE TABLE titanic_data.passengers_by_class (

 id SERIAL PRIMARY KEY,

 name VARCHAR(100),

 age INT,

 gender VARCHAR(10),

 survived BOOLEAN,

 details JSONB

) PARTITION BY LIST ((details ->> 'ticket' ->> 'type'));

This command tells PostgreSQL to partition the table based on the ticket
type stored in the JSONB details column.

Creating List Partitions

Next, create partitions for each ticket class:

CREATE TABLE titanic_data.passengers_first_class PARTITION OF
titanic_data.passengers_by_class

FOR VALUES IN ('First-Class');

CREATE TABLE titanic_data.passengers_second_class PARTITION OF
titanic_data.passengers_by_class

FOR VALUES IN ('Second-Class');

CREATE TABLE titanic_data.passengers_third_class PARTITION OF
titanic_data.passengers_by_class

FOR VALUES IN ('Third-Class');

Inserting Data into the Partitioned Table

Insert passenger data with different ticket classes:

INSERT INTO titanic_data.passengers_by_class (name, age, gender,
survived, details)

VALUES ('Sarah Williams', 30, 'female', true, '{"ticket": {"type": "First-
Class", "price": 120.00}}'),

 ('Tom Brown', 40, 'male', false, '{"ticket": {"type": "Third-Class",
"price": 30.00}}'),

 ('Anna White', 22, 'female', true, '{"ticket": {"type": "Second-Class",
"price": 70.00}}');

PostgreSQL will automatically place each row into the correct partition
based on the ticket type.

Querying the Partitioned Table

When querying for passengers in a specific ticket class, PostgreSQL will
only scan the relevant partition:

SELECT * FROM titanic_data.passengers_by_class WHERE details ->>
'ticket' ->> 'type' = 'First-Class';

This query will only scan the passengers_first_class partition, skipping the
others.

Sample Program: Partitioning by Hash

Hash partitioning divides a table into partitions based on a hash function
applied to the values of a specified column. This method ensures even
distribution of data across partitions, making it useful when you don’t
have natural ranges or discrete categories but still want to improve
performance by splitting data.

We will partition the Titanic dataset based on the id of passengers,
ensuring that data is evenly distributed across partitions regardless of the
ID values.

Creating a Partitioned Table

First, create a partitioned table that uses id as the partition key:

CREATE TABLE titanic_data.passengers_hash_partitioned (

 id SERIAL PRIMARY KEY,

 name VARCHAR(100),

 age INT,

 gender VARCHAR(10),

 survived BOOLEAN,

 details JSONB

) PARTITION BY HASH (id);

Creating Hash Partitions

Next, create multiple partitions to hold data distributed by the hash of the
id column. We will create 4 partitions:

CREATE TABLE titanic_data.passengers_hash_0 PARTITION OF
titanic_data.passengers_hash_partitioned

FOR VALUES WITH (MODULUS 4, REMAINDER 0);

CREATE TABLE titanic_data.passengers_hash_1 PARTITION OF
titanic_data.passengers_hash_partitioned

FOR VALUES WITH (MODULUS 4, REMAINDER 1);

CREATE TABLE titanic_data.passengers_hash_2 PARTITION OF
titanic_data.passengers_hash_partitioned

FOR VALUES WITH (MODULUS 4, REMAINDER 2);

CREATE TABLE titanic_data.passengers_hash_3 PARTITION OF
titanic_data.passengers_hash_partitioned

FOR VALUES WITH (MODULUS 4, REMAINDER 3);

These partitions evenly distribute the rows across 4 partitions based on the
id hash modulo operation.

Inserting Data into the Partitioned Table

When you insert data into the table, PostgreSQL automatically computes
the hash of the id and places the row in the appropriate partition:

INSERT INTO titanic_data.passengers_hash_partitioned (name, age,
gender, survived, details)

VALUES ('James Black', 55, 'male', true, '{"ticket": {"type": "First-Class",
"price": 150.00}}');

Querying the Partitioned Table

Queries on this table are spread across partitions, which improves
performance when the data grows large. For example:

SELECT * FROM titanic_data.passengers_hash_partitioned WHERE id =
3;

PostgreSQL will only scan the partition containing the hash result for id =
optimizing the query.

By now, we implemented and hash partitioning methods on the Titanic
dataset to optimize performance and better manage large datasets. Each of
these partitioning methods can be applied based on the nature of the data

and query patterns, allowing PostgreSQL to skip scanning irrelevant
partitions, reducing the overhead, and improving query performance. This
strategy is especially useful for large datasets like the Titanic dataset,
where we frequently filter and query specific segments of data.

Managing Partitions Effectively

After implementing partitioning on the Titanic dataset, managing those
partitions becomes essential as data grows or changes over time.
PostgreSQL 17 introduces flexible partition management features, such as
the ability to and split partitions. These capabilities are useful when
handling changes in data size or query requirements, ensuring that your
partitions remain optimal for performance and manageability.

Here, we will demonstrate how to add new partitions as your data grows,
merge smaller partitions for efficiency, and split large partitions to better
manage increasing data.

Sample Program: Adding Partitions

As your data grows, you may need to add new partitions to accommodate
future entries. For instance, if we are storing passengers by age or ticket
we might anticipate new data that doesn't fit within the existing partitions,
and therefore, additional partitions are required.

In our range partitioned Titanic table (partitioned by age), suppose we
want to add a new partition for infants (passengers aged 0 to 1 year old),
as this data is currently being grouped with children (ages 0-18).

Add a New Range Partition for Infants

We can easily add a new partition to handle infant passengers:

CREATE TABLE titanic_data.passengers_infants PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (0) TO (1);

This command creates a new partition that will store all passengers aged
between 0 and 1. Any new data inserted with age = 0 or age = 1 will now
be placed in the passengers_infants partition, improving the specificity of
our data management.

Verify the New Partition

You can verify that the partition was created successfully by checking the
list of partitions under the passengers_partitioned table:

\d+ titanic_data.passengers_partitioned

This will show the newly added partition along with the existing ones.

Sample Program: Merging Partitions

Over time, some partitions may become too small or may no longer need
to be separated. Merging these smaller partitions into larger ones can
reduce the overhead of maintaining many partitions and improve query
performance. PostgreSQL 17 allows you to merge partitions for better
efficiency.

Here, we will decide that managing a separate partition for infants isn’t
necessary, and we want to merge it back with the passengers_children
partition (ages 0-18).

Merge Partitions

To merge the passengers_infants partition back into the
passengers_children partition, you would need to:

Move data from the passengers_infants partition into the
passengers_children partition.
Drop the passengers_infants partition after the data transfer.

Following is how you can perform this operation:

INSERT INTO titanic_data.passengers_children

SELECT * FROM titanic_data.passengers_infants;

DROP TABLE titanic_data.passengers_infants;

This process moves all data from the passengers_infants partition into the
passengers_children partition and then drops the now unnecessary
partition.

Validate the Data Movement

After merging, check that the data has been moved and that the
passengers_infants partition no longer exists by running:

SELECT * FROM titanic_data.passengers_children WHERE age
BETWEEN 0 AND 1;

This will confirm that infant passengers are now stored within the
passengers_children partition.

Sample Program: Splitting Partitions

Splitting partitions can be necessary when a particular partition grows too
large. For example, if the adults partition (ages 18-60) has grown
significantly, you might want to split it into smaller sub-partitions to
distribute the data more effectively and improve query performance.

Suppose we decide to split the adults partition into smaller partitions by
decade to optimize queries based on age groups such as 18-30, 31-45, and

46-60.

Create New Partitions for Age Groups

We will create three new partitions to replace the original
passengers_adults partition:

CREATE TABLE titanic_data.passengers_adults_18_30 PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (18) TO (31);

CREATE TABLE titanic_data.passengers_adults_31_45 PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (31) TO (46);

CREATE TABLE titanic_data.passengers_adults_46_60 PARTITION OF
titanic_data.passengers_partitioned

FOR VALUES FROM (46) TO (60);

Move Data to the New Partitions

Now, we need to move the data from the passengers_adults partition to the
newly created partitions:

INSERT INTO titanic_data.passengers_adults_18_30

SELECT * FROM titanic_data.passengers_adults WHERE age
BETWEEN 18 AND 30;

INSERT INTO titanic_data.passengers_adults_31_45

SELECT * FROM titanic_data.passengers_adults WHERE age
BETWEEN 31 AND 45;

INSERT INTO titanic_data.passengers_adults_46_60

SELECT * FROM titanic_data.passengers_adults WHERE age
BETWEEN 46 AND 60;

Drop the Old Partition

Once the data has been moved, we can drop the original passengers_adults
partition:

DROP TABLE titanic_data.passengers_adults;

Verify the New Partitions

You can now verify that the new partitions are in place and that the data
has been properly distributed:

SELECT * FROM titanic_data.passengers_partitioned WHERE age
BETWEEN 18 AND 60;

This query will now access the appropriate sub-partitions improving
performance for age-based queries.

PostgreSQL 17’s enhanced partition management features make it easier
to dynamically adjust partitions, offering greater flexibility and control
over large datasets like the Titanic dataset. This allows you to maintain
high performance and keep the database well-organized as it scales.

Optimizing Queries on Partitioned Tables

It is known that optimizing queries on partitioned tables requires more
than just partitioning the data, as it requires understanding partition
pruning and employing the right indexing Partition pruning ensures that
only relevant partitions are scanned during query execution, reducing the
overhead and improving query efficiency. Meanwhile, indexing ensures
that queries accessing individual partitions can still benefit from rapid data
retrieval.

So here now, we will explore how partition pruning works and how to set
up indexes on partitioned tables, using the partitioned Titanic dataset we
previously created.

Sample Program: Partition Pruning in Range Partitioning

Partition pruning is the process by which PostgreSQL eliminates irrelevant
partitions from a query before scanning. When a query involves filtering
based on the partitioning key, PostgreSQL identifies the partitions that
contain the relevant data and skips the others, significantly reducing query
execution time.

Here, we consider the Titanic dataset, where we partitioned the
passengers_partitioned table by age ranges (children, adults, and seniors).
Suppose we want to run a query that retrieves only adult passengers (ages
18-60).

Query Without Partition Pruning

Without partition pruning, PostgreSQL would have to scan all partitions to
retrieve the data, including those that don't contain relevant information.
This is inefficient, particularly when only one or two partitions contain the
necessary data.

Given below is a query that selects adult passengers:

SELECT * FROM titanic_data.passengers_partitioned WHERE age
BETWEEN 18 AND 60;

Partition Pruning in Action

When PostgreSQL executes this query, it uses partition pruning to identify
that only the passengers_adults partition contains data for ages between 18
and 60. As a result, PostgreSQL will prune the passengers_children and
passengers_seniors partitions and scan only the passengers_adults
partition.

You can see partition pruning in action by using the EXPLAIN command
to view the query execution plan:

EXPLAIN SELECT * FROM titanic_data.passengers_partitioned
WHERE age BETWEEN 18 AND 60;

The output will show that only the relevant partition is being scanned,
reducing the overall execution time.

Automatic Partition Pruning

PostgreSQL handles partition pruning automatically whenever the query
condition involves the partition key. However, for partition pruning to
work effectively, it’s essential to write queries that take advantage of the
partitioning structure.

For example, the filtering condition age BETWEEN 18 AND directly
corresponds to the partition key must be ensured.

Sample Program: Indexing Range-Partitioned Tables

While partition pruning optimizes which partitions get scanned, indexing
ensures that queries within each partition can be executed efficiently.
When a partitioned table grows large, using the right indexing strategy can
greatly improve performance, especially for queries that do not directly
involve the partition key.

For the Titanic dataset partitioned by age, we can further optimize queries
by adding indexes to the partitions. We will assume we frequently query
passengers based on their name or ticket class in addition to age.

Creating Indexes on Partitions

Instead of creating a single index for the entire table, we create separate
indexes on each partition. For example, to improve searches by name
within the passengers_adults partition, we can create an index on the name
column:

CREATE INDEX idx_adults_name ON titanic_data.passengers_adults
(name);

Similarly, we can create indexes on the name column for other partitions:

CREATE INDEX idx_children_name ON
titanic_data.passengers_children (name);

CREATE INDEX idx_seniors_name ON titanic_data.passengers_seniors
(name);

These indexes ensure that even within a partition, searches by passenger
name will be faster.

Querying with Indexed Partitions

Now, we run a query to find all adult passengers named "John Doe."
PostgreSQL will first use partition pruning to scan only the
passengers_adults partition and then use the index on name to quickly
retrieve the matching rows:

SELECT * FROM titanic_data.passengers_partitioned WHERE name =
'John Doe' AND age BETWEEN 18 AND 60;

This combination of partition pruning and indexing ensures that the query
is executed efficiently, scanning only the relevant partition and using the
index to speed up the search.

Sample Program: Indexing List-Partitioned Tables

For the Titanic dataset partitioned by ticket class (First-Class, Second-
Class, Third-Class), we can similarly create indexes on commonly queried
fields, such as ticket price or survival

Creating Indexes on Partitions

We will create indexes on the details -> 'ticket' ->> 'price' field, which
stores ticket prices in the JSONB details column. We can create a GIN
index to optimize queries that involve searching or filtering by ticket
price:

CREATE INDEX idx_first_class_ticket_price ON
titanic_data.passengers_first_class USING GIN ((details -> 'ticket' ->>
'price'));

We repeat this process for other partitions:

CREATE INDEX idx_second_class_ticket_price ON
titanic_data.passengers_second_class USING GIN ((details -> 'ticket' ->>
'price'));

CREATE INDEX idx_third_class_ticket_price ON
titanic_data.passengers_third_class USING GIN ((details -> 'ticket' ->>
'price'));

Querying with Indexed Partitions

To query for all First-Class passengers who paid more than $150 for their
ticket:

SELECT * FROM titanic_data.passengers_by_class WHERE (details ->
'ticket' ->> 'price')::NUMERIC > 150 AND details ->> 'ticket' ->> 'type' =

'First-Class';

This query will use partition pruning to scan only the
passengers_first_class partition and leverage the GIN index on ticket
prices to optimize the search within that partition.

Sample Program: Indexing Hash-Partitioned Tables

In hash partitioning, data is distributed evenly across partitions based on a
hash function. For example, in our Titanic dataset partitioned by passenger
we can create indexes on the id column or other frequently queried
columns such as gender or

Creating Indexes on Hash Partitions

We will create indexes on the gender column across all hash partitions to
optimize queries that filter passengers by gender:

CREATE INDEX idx_hash_0_gender ON titanic_data.passengers_hash_0
(gender);

CREATE INDEX idx_hash_1_gender ON titanic_data.passengers_hash_1
(gender);

CREATE INDEX idx_hash_2_gender ON titanic_data.passengers_hash_2
(gender);

CREATE INDEX idx_hash_3_gender ON titanic_data.passengers_hash_3
(gender);

This ensures that queries involving the gender field will be optimized,
regardless of which partition the data resides in.

Querying with Indexed Hash Partitions

When querying for female passengers with a specific PostgreSQL will use
partition pruning to narrow down the relevant partition (based on the hash
of the and then use the index on gender to optimize the search:

SELECT * FROM titanic_data.passengers_hash_partitioned WHERE id =
3 AND gender = 'female';

This query benefits from both partition pruning (to narrow down to the
relevant hash partition) and indexing (to quickly retrieve rows within that
partition).

Monitoring Query Performance

PostgreSQL provides several tools for analyzing query execution.

Using EXPLAIN ANALYZE

The EXPLAIN ANALYZE command allows you to see the execution plan
for a query, including whether partition pruning and indexes are being
used. For example:

EXPLAIN ANALYZE SELECT * FROM
titanic_data.passengers_partitioned WHERE age BETWEEN 18 AND 60;

The output will show if partition pruning occurred and which indexes
were used in the query.

Monitoring Index Usage

The pg_stat_user_indexes view provides statistics on how often each
index is used. This can help you determine whether your indexes are being
utilized efficiently:

SELECT indexrelname, idx_scan, idx_tup_read, idx_tup_fetch

FROM pg_stat_user_indexes

WHERE relname = 'passengers_partitioned';

Low idx_scan values might indicate that certain indexes are underutilized
and could be candidates for optimization or removal.

By combining partition pruning with an appropriate indexing PostgreSQL
can significantly improve query performance on partitioned tables.
Partition pruning ensures that only relevant partitions are scanned, while
indexes within each partition speed up data retrieval.

Summary

To conclude, we demonstrated the most efficient methods for managing
large datasets by implementing and optimizing table partitioning strategies
in PostgreSQL. We started by getting to grips with the different types of
partitioning, including range, list, and hash partitioning, and how they can
be used. We partitioned the Titanic dataset to organize data into smaller,
more manageable partitions based on passenger age, ticket class, and ID.

We learned how to add, merge, and split partitions as the dataset evolved.
The chapter ended with a clear explanation of how to optimize queries on
partitioned tables using partition pruning and indexing strategies. We also
implemented specific indexes on individual partitions, which optimized
query execution by ensuring rapid data retrieval within each partition.
These strategies significantly improved the performance of complex
queries on large datasets, ensuring the database remained responsive as it
scaled.

Chapter 7: Backup and Recovery Best Practices

Brief Overview

This chapter focuses on creating a dependable backup and recovery
strategy. We start by learning how to create an effective backup strategy,
which includes assessing system requirements like recovery time
objectives (RTO) and recovery point objectives (RPO). We then examine
physical backups with pg_basebackup, a tool that generates consistent
physical snapshots of the database cluster.

Next, we'll look at logical backups using pg_dump and pg_restore, which
give you more precise control over backup and restore operations. These
tools are useful for backing up specific schemas or tables, giving you
more flexibility with data management. Finally, we introduce BART
(Backup and Recovery Tool), to automate backup and recovery processes,
including incremental backups, and streamlines the entire workflow,
particularly for large-scale deployments. Put together, these topics cover
all you need to know about backup methodologies to keep your data safe
and get back up and running quickly after a disaster.

Designing a Backup Strategy

Two critical metrics that influence the design of any backup strategy are
RPO and Once these objectives are assessed, the choice between physical
backups (which replicate the entire database) and logical backups (which
allow for selective, schema-specific backups) becomes clearer.

Before deciding on a backup strategy, it’s important to assess your
business needs by determining the RPO and RTO. These metrics help you
understand the acceptable amount of data loss and the time needed to
restore operations after a failure.

RPO

RPO measures the maximum acceptable amount of data loss in the event
of a disaster. For example, if your database experiences a failure, RPO
indicates how far back in time you can afford to recover without severely
impacting operations. A low RPO means your system must capture data
frequently (such as in real-time or with frequent backups), while a higher
RPO means you can tolerate losing several minutes or hours of data.

For instance:

High If you can tolerate losing up to a day’s worth of data, daily backups
might suffice. This is common for systems that don’t see constant data
changes.

Low For high-transaction systems, like e-commerce platforms or financial
services, where any data loss is unacceptable, you would need continuous
backups, possibly using streaming replication or point-in-time recovery

RTO

RTO defines how quickly your system needs to be restored to a
functioning state after a failure. A low RTO requires a more efficient and
fast recovery method, while a higher RTO allows for more flexibility in
the recovery process.

For example:

Low If your system needs to be back online within minutes, then you will
need a robust strategy, such as having a hot standby or using tools like
pg_basebackup for physical backups, which offer faster restore times.
High If your system can tolerate several hours of downtime, you can
afford a slower recovery process, such as using logical backups, which
take longer to restore but offer flexibility in restoring specific parts of the
database.

Based on your RPO and RTO assessments, you will need to choose
between physical backups and logical Each type has its advantages and is
suited to different scenarios.

Sample Program: Using pg_basebackup for Physical Backups

Physical Backup Overview

Physical backups involve copying the database cluster's entire data
directory. This type of backup is ideal when you need to back up the entire
database quickly and efficiently. Physical backups are often faster to
restore because they copy the data at the block level, and they preserve the
entire database state, including system catalogs and WAL (Write-Ahead
Logging) files.

Physical backups are typically used in conjunction with WAL archiving
and This means the system continuously records changes, and the backups
can restore the database to any specific point in time, minimizing data loss
(low RPO). Restoring from a physical backup can be faster because it
doesn’t involve re-creating the database objects. Instead, it restores the
entire cluster at once, leading to lower recovery times (low RTO).

When to Choose Physical Backups?

When you need fast recovery times (low RTO).
When your database contains large volumes of
When you require point-in-time recovery with minimal data loss (low
RPO).
When you want to back up the entire database cluster, including all
databases and configuration files.

Using ‘Pg_basebackup’

pg_basebackup is the standard tool for creating physical backups in
PostgreSQL. It replicates the entire database cluster and is often used with
replication or high-availability configurations.

Given below is how you can use pg_basebackup to create a physical
backup:

pg_basebackup -D /path/to/backup/dir -F tar -z -X fetch -P

Here,

Specifies the directory to store the backup.
-F Creates the backup in the tar format.
Compresses the backup.

-X Ensures that all WAL files are included.
Shows progress while the backup is being created.

The physical backup created with pg_basebackup can be restored by
simply unpacking the archive and placing it in the appropriate directory.

Sample Program: Using pg_dump and pg_restore for Logical Backups

Logical Backups Overview

Logical in contrast, involve exporting database objects like tables,
schemas, and roles. These backups are created using tools such as
pg_dump and Logical backups offer greater flexibility because they allow
you to back up specific parts of the database (e.g., individual schemas or

tables) and can be used to migrate data between different versions of
PostgreSQL.

RPO Logical backups are generally less frequent than physical backups
because they take longer to create. Thus, they might not be suitable for
low RPO requirements unless combined with other mechanisms like WAL
archiving.

RTO Restoring from a logical backup is slower because PostgreSQL
needs to recreate all database objects and repopulate data from scratch,
leading to higher recovery times (high RTO).

When to Choose Logical Backups?

When you need flexibility in backup and recovery, such as restoring only
certain tables or schemas.

● When you are migrating data between different PostgreSQL
versions or instances.

● When you need individual table-level backups for targeted recovery
or auditing purposes.

● When RTO is less critical, and the backup size is manageable.

Using ‘pg_dump’ and ‘pg_restore’

pg_dump is the standard tool for creating logical backups. It generates
SQL scripts that can recreate database objects and data.

Given below is how to back up the Titanic database using

pg_dump -U postgres -d titanic_db -F c -f
/path/to/backup/titanic_db.backup

Here, -F c creates the backup in a custom format, which is useful for
restoration with

Now, to restore the backup using

pg_restore -U postgres -d titanic_db_restored
/path/to/backup/titanic_db.backup

This restores the entire Titanic database, including its tables, schemas, and
data.

In many cases, the best strategy is to use a combination of both physical
and logical backups, leveraging the strengths of each. A common strategy
might involve taking a weekly physical backup and performing daily
logical backups of critical tables or schemas. This approach ensures that
the entire database can be restored quickly if needed, while also offering

the flexibility to restore specific parts of the database if only a portion of
the data is corrupted.

Physical Backups with pg_basebackup

pg_basebackup is a built-in PostgreSQL utility specifically designed for
creating physical backups of an entire PostgreSQL cluster. It copies the
entire data directory, including all configurations, table data, and write-
ahead logs, enabling easy restoration in the event of a failure.

Here, we will learn to create consistent physical backups using
pg_basebackup, stream these backups for large databases, and handle
large datasets efficiently.

Consistent Backups with pg_basebackup

The goal of a physical backup is to create an exact copy of the database
cluster that can be restored quickly and accurately. pg_basebackup ensures
consistency by including Write-Ahead which record every transaction that
has occurred. This ensures that the database can be restored to a consistent
state.

Basic Backup Command

To create a consistent physical backup, the most basic usage of
pg_basebackup is as follows:

pg_basebackup -D /path/to/backup/dir -F tar -z -X fetch -P

Here,

-D Specifies the directory where the backup should be stored.
-F Creates the backup in tar format, making it easier to move or compress
the backup files.
Compresses the backup to save disk space.
-X Ensures that all WAL files are fetched at the end of the backup,
guaranteeing consistency.

Displays progress as the backup is being created.

For example, to back up the Titanic database cluster, you would specify
the location where the backup should be stored:

pg_basebackup -D /backups/titanic_cluster_backup -F tar -z -X fetch -P

Consistency with WAL files

WAL files are essential for replaying the changes made during the backup
process and bringing the restored database to a consistent state. Without
these files, a backup may be inconsistent, especially in a busy database
with active writes during the backup.

By using -X PostgreSQL automatically fetches the required WAL files at
the end of the backup, ensuring that the database will be consistent upon
restoration. Alternatively, you can use -X stream to stream the WAL files
in real time, which will be learned in the next section.

Verifying the Backup

Once the backup is complete, it’s essential to verify that the backup
directory contains both the data directory and WAL This ensures the
integrity of the backup and prepares it for restoration.

To check the contents of the backup:

ls /backups/titanic_cluster_backup/

You should see the data files and WAL These files guarantee that the
database can be restored to its last consistent state.

Streaming Backups for Large Databases

Streaming is particularly useful in high-availability (HA) environments,
where the goal is to have continuous backups without overloading the
primary server or taking snapshots that are too large to manage in a single
operation. Streaming backups allow you to manage large datasets by
continuously sending both data files and WAL segments in real time to an
external location, such as a standby server or remote storage.

Streaming WAL files

The -X stream option in pg_basebackup allows for real-time streaming of
WAL segments during the backup process. This is particularly beneficial
for large databases, as it streams the WAL files in real time rather than
fetching them at the end of the backup. Streaming reduces the I/O
overhead on the primary server and allows backups to be made without
pausing database operations.

pg_basebackup -D /backups/streamed_backup -F tar -z -X stream -P

This command will:

Stream the backup data as well as the WAL files in real-time.
Compress the files to save disk space.
Ensure that you get a complete, consistent backup even in a high-
transaction environment.

Handling Large Databases during Backup

For large PostgreSQL databases, managing backup size and time becomes
critical. Some best practices for handling large databases during backup
include:

Compression

Use the -z option to compress the backup files, which reduces the disk
space required. For extremely large databases, you can further reduce the
size by specifying a compression level.

pg_basebackup -D /backups/streamed_backup -F tar -z5 -X stream -P

This sets the compression level to which offers a balance between
compression speed and size.

Parallelization

Use multiple worker threads to speed up the backup process for very large
databases. The -j option enables parallelism, with the number of threads
specified as an argument:

pg_basebackup -D /backups/titanic_large_backup -F tar -z -X stream -j 4 -
P

In the above, -j 4 creates the backup using four parallel worker threads,
reducing the total time taken to perform the backup.

Storage Management

When backing up large datasets, ensure that the destination storage has
enough space to handle both the raw data and the WAL files. Regularly
monitor disk usage and implement automatic archival or cleanup scripts to
manage older backups.

Handling Backups for Large Databases

When working with large databases, it’s essential to handle backups
efficiently. In addition to the techniques mentioned above, there are
additional strategies to ensure that backups do not negatively impact the
performance of your production database.

Continuous Archiving and WAL Segments

For large databases with frequent updates, it's recommended to enable
WAL archiving to continuously stream changes. This helps reduce the size
of each individual backup and enables

To enable continuous WAL archiving, modify the postgresql.conf file:

archive_mode = on

archive_command = 'cp %p /backups/wal_archive/%f'

This ensures that each WAL segment is archived to a separate directory as
soon as it is created. When restoring a backup, you can use these WAL
segments to replay the changes and bring the database to the desired state.

Replication Slots for Streaming

Replication slots help ensure that the primary server retains all necessary
WAL segments for a standby server or backup system. This prevents WAL
files from being recycled or deleted before they can be backed up.

To create a replication slot for streaming backups:

psql -c "SELECT * FROM
pg_create_physical_replication_slot('backup_slot');"

Then, you can use this replication slot during backup to ensure that no
WAL data is lost:

pg_basebackup -D /backups/titanic_streamed_backup -F tar -X stream --
slot=backup_slot -P

Backing up to Remote Location

To prevent backups from using local disk space, you can stream backups
directly to a remote server over SSH or another protocol. You can stream
backups to a remote server using tools like rsync or directly over SSH as
shown below:

pg_basebackup -D - -F tar -z -X stream -P | ssh user@backupserver "cat >
/backups/streamed_backup.tar.gz"

This command streams the backup directly to the remote server, where it
is compressed and stored.

When dealing with large PostgreSQL databases, streaming WAL files,
using parallel workers, and managing storage efficiently are essential for
reducing the backup time and size. Techniques like replication slots,
continuous archiving, and remote backups can handle large datasets
effectively and your database is always protected and can be restored
quickly.

Logical Backups with pg_dump and pg_restore

In this section, we will perform selective backups of individual schemas
and tables using pg_dump and how to restore these backups with

Backing up Individual Schemas and Tables

Logical backups allow you to back up specific parts of your database
rather than the entire cluster. This is particularly useful when managing
large datasets where full backups may be unnecessary, or when you need
to migrate a portion of the database.

Backing up a Specific Schema

Here, we back up the public schema in the Titanic database, which
contains the passengers table. To back up a single schema, use the -n
option in

pg_dump -U postgres -d titanic_db -n public -F c -f
/backups/titanic_public_schema.backup

In the above script,

-n Specifies the public schema to back up.
-F Creates the backup in a custom which can be restored using
-f Specifies the output file where the backup will be saved.

This command will back up all the objects within the public schema,
including tables, indexes, and sequences, but won’t include data from
other schemas (if they exist).

Backing up a Specific Table

To back up an individual table, such as the passengers table, you can use
the -t option in This allows you to back up just one table and its associated
data.

pg_dump -U postgres -d titanic_db -t passengers -F c -f
/backups/titanic_passengers_table.backup

Here,

-t Specifies the passengers table to back up.
-F Creates the backup in a custom which allows for flexible restoration.
-f Specifies the output file for the backup.

This command backs up the structure and data of the passengers table but
doesn’t include other tables or objects within the database.

Backing up Multiple Tables

You can also back up multiple tables by specifying more than one -t
option. For example, if the Titanic database had multiple tables such as
passengers and and we wanted to back up both, we would run:

pg_dump -U postgres -d titanic_db -t passengers -t tickets -F c -f
/backups/titanic_selected_tables.backup

This will create a backup containing only the passengers and tickets
tables, excluding other tables in the database.

Restoring Backups with pg_restore

The logical backups created with pg_dump can be restored using the
pg_restore tool. Depending on the backup format, pg_restore allows for
selective restoration of specific tables, schemas, or even data, making it a
versatile tool for managing backups.

Restoring a Specific Schema

To restore the public schema from the backup we created earlier, use the
following command:

pg_restore -U postgres -d titanic_db_restored -n public
/backups/titanic_public_schema.backup

Here,

-n Specifies that we want to restore only the public schema.
The target database where the schema will be restored.
The backup file from which the schema will be restored.

This restores the entire public schema, including all tables, sequences, and
indexes within that schema.

Restoring a Specific Table

To restore the passengers table, which we backed up individually, use the
following command:

pg_restore -U postgres -d titanic_db_restored -t passengers
/backups/titanic_passengers_table.backup

Here,

-t Specifies the passengers table to be restored.

The target database where the table will be restored.

The backup file containing the table data and structure.

This command restores the passengers table, including its data and
structure, to the specified database.

Selective Restore from Full Backup

If you created a full database backup but want to restore only certain parts,
pg_restore allows you to select specific objects to restore. For example, if
you have a full backup of the Titanic database but only want to restore the
tickets table, you would run:

pg_restore -U postgres -d titanic_db_restored -t tickets
/backups/titanic_full_backup.backup

This restores only the tickets table from a full backup file, excluding all
other tables and objects.

Overwriting Existing Data

When restoring data into an existing database, the default behavior of
pg_restore is to append the data to existing tables. If you want to replace
the existing data, you can use the --clean option, which drops the existing
objects before restoring them.

For example, to overwrite the existing passengers table with data from the
backup:

pg_restore -U postgres -d titanic_db_restored -t passengers --clean
/backups/titanic_passengers_table.backup

This command drops the existing passengers table and recreates it from
the backup, ensuring that the restored data doesn’t conflict with any pre-
existing data.

Whether you are backing up specific schemas, individual tables, or
creating full database backups, the ability to selectively restore parts of the
database makes pg_dump the goto tool for database administrators.

Introducing BART

BART (Backup and Recovery Tool) is an enterprise-grade backup solution
designed for PostgreSQL that simplifies the process of creating,
managing, and restoring backups. BART automates and streamlines both
physical backups and making it easier to manage backups for large
databases or complex systems.

Unlike traditional tools like pg_basebackup and BART offers advanced
features such as incremental WAL file and backup These features provide
more efficient storage management and faster recovery times, especially
for high-availability PostgreSQL systems.

Key Features of BART

BART stands out from other PostgreSQL backup tools due to its powerful
automation and management features, making it suitable for enterprises
handling large databases or multiple PostgreSQL instances.

Full backups

BART performs a full physical backup of your PostgreSQL database
cluster, much like This includes all necessary data files and configurations
required to restore the entire database.

Incremental backups

BART offers the ability to create incremental backups, which only back
up the changes made since the last full or incremental backup. This
reduces storage space requirements and speeds up the backup process.

WAL Archiving

BART automatically archives Write-Ahead Log files to ensure that no
transaction data is lost, enabling PITR. This is especially useful for high-
transaction databases where every write operation needs to be recoverable.

Backup Automation and Scheduling

BART allows you to schedule backups, ensuring regular and automated
database backups without manual intervention. It also helps manage
backup retention policies, automatically purging older backups according
to your set rules.

PITR

BART supports which allows you to restore your database to a specific
point in time, using both full backups and the WAL logs that BART
archives. This feature is essential for recovering from data corruption or
accidental data loss.

Backup Integrity Verification

BART provides backup validation, ensuring that backups are consistent
and can be restored. It checks the integrity of both data files and WAL
segments, providing added reliability in disaster recovery scenarios.

Installing BART

To start using BART, you first need to install it on your PostgreSQL
server. The installation process requires downloading the BART package,
configuring it for your PostgreSQL cluster, and ensuring it has the
appropriate permissions to manage backups and WAL files.

Now, before you install it, ensure you have the following:

● PostgreSQL 9.6 or higher (BART is designed for modern
PostgreSQL versions).

● Access to the PostgreSQL server and its configuration files.

● Sufficient storage for backups and archived WAL logs.

● An archive directory where BART can store backup files and WAL
segments.

Installing BART

Download the BART Package

Visit the EnterpriseDB repository to download the BART package:

wget https://download.enterprisedb.com/postgresql/edb-bart-.tar.gz

Replace with the latest version of BART.

Extract the Package

tar -xzf edb-bart-.tar.gz

Install BART

Navigate to the extracted directory and run the installation commands:

cd edb-bart-

./configure

make

sudo make install

Verify Installation

To confirm that BART has been installed, run the following command:

bart --version

You should see the version of BART that was installed.

Configuring BART

After installation, BART needs to be configured to work with your
PostgreSQL database cluster. The main configuration file for BART is
which specifies where backups should be stored and how WAL archiving
is handled.

Edit the Configuration file

Open the bart.cfg file in a text editor:

nano /etc/bart.cfg

Specify the Archive Directory

Set the location for backups and WAL file archives:

[BART]

backup_path = /backups/bart_backups

wal_path = /backups/bart_wal_archive

Configure the PostgreSQL Instance

Under the [PostgreSQL] section, provide the details for your PostgreSQL
server:

[PostgreSQL]

host = localhost

port = 5432

user = postgres

Enable WAL Archiving in PostgreSQL

To enable WAL archiving, update the postgresql.conf file:

archive_mode = on

archive_command = 'cp %p /backups/bart_wal_archive/%f'

This command archives WAL files to the directory where BART can
manage them.

Automating Backups and Restores with BART

Once BART is installed and configured, you can start using it to automate
backups and restores. This section demonstrates how to create full and
incremental backups, schedule them, and restore the database when
needed.

Creating Full Backups

To create a full backup of your PostgreSQL database cluster, use the
backup command:

bart backup --pgdata /var/lib/postgresql/data --backup-label
"full_backup_2024"

Here,

The path to your PostgreSQL data directory.
A label to identify the backup.

This command creates a full backup and stores it in the backup path
specified in You can check the backup status with the following
command:

bart show-backups

Creating Incremental Backups

After performing a full backup, you can use BART to create incremental
backups. These only store the changes made since the last full or
incremental backup, saving both time and storage space.

For example, to create an incremental backup:

bart backup --pgdata /var/lib/postgresql/data --backup-label
"incremental_backup_2024" --incremental

This command ensures that only the differences from the last backup are
recorded.

Automating Backups with Scheduling

To automate backups, you can use cron jobs to schedule full and
incremental backups at regular intervals. For example, to schedule a full
backup every Sunday at 2 AM, add the following line to your crontab:

0 2 * * 0 /usr/bin/bart backup --pgdata /var/lib/postgresql/data --backup-
label "weekly_full_backup"

Similarly, to schedule daily incremental backups at 2 AM:

0 2 * * 1-6 /usr/bin/bart backup --pgdata /var/lib/postgresql/data --backup-
label "daily_incremental_backup" --incremental

These scheduled jobs ensure that backups are created regularly without
manual intervention.

Restoring a Full Backup

To restore a database from a full backup, use the following command:

bart restore --pgdata /var/lib/postgresql/data --backup-id

Here, replace with the identifier of the backup you want to restore, which
can be found using the bart show-backups command.

BART simplifies and automates backup and recovery tasks for
PostgreSQL by offering full and incremental backups, automated
scheduling, and point-in-time recovery. By automating backups using
BART, administrators can maintain data integrity and ensure rapid
recovery with minimal manual effort. For large PostgreSQL clusters, the
use of BART ensures that both storage space and recovery times are
optimized for enterprise environments.

Summary

Collectively, we have learned the PostgreSQL database backup and
recovery strategies. First, we learned how to create an effective backup
strategy using the RPO and RTO. Next, we looked into physical backups
with pg_basebackup, which allowed us to create consistent full database
backups by copying the entire PostgreSQL data directory. We also
practiced streaming these backups in real time to better manage large
datasets. This section discussed how to optimize backups of large
databases using techniques like compression and parallelism.

We then learned how to perform logical backups with pg_dump and
pg_restore. This method is ideal for performing partial restores and
migrations between PostgreSQL versions. Finally, we learned how BART
can automate backups, including incremental backups.

Chapter 8: Streaming Replication and High Availability

Brief Overview

This chapter teaches you how to implement robust high availability
solutions that ensure continuous access to your PostgreSQL databases
despite hardware or software failures. First, we'll look at the key aspects
of streaming replication and high availability. Then, we will perform
setting up streaming replication, which teaches us how to configure a
primary (master) server and one or more standby (replica) servers to
replicate data in real time.

The next step is to manage replication, which includes monitoring
replication status, adjusting configurations for performance, and resolving
replication delays or conflicts. The final topic, failover and switchover,
walks us through the scenarios in which the primary server fails. We also
look at how to change roles across servers for maintenance or load
balancing purposes.

Setting up Streaming Replication

Streaming replication in PostgreSQL enables real-time data replication
from a primary (master) server to one or more standby (replica) servers.
This process is vital for high availability and disaster ensuring that the
database remains available even if the primary server fails. Before diving
into the setup, it's important to understand the two main types of
replication in and logical replication—as well as the differences between
synchronous and asynchronous replication modes.

Physical vs. Logical Replication

Replication in PostgreSQL comes in two forms: physical and
Understanding the differences between them helps you choose the best
method for your use case.

Physical Replication

Physical replication operates at the block level and replicates the entire
state of the database cluster. It copies the WAL (Write-Ahead Logging)
files from the primary server to the standby server, allowing the standby
server to replay those changes and maintain an exact copy of the primary.
It is simple, efficient, and captures the entire database state, including
system catalogs, indexes, and data. The replica is and it cannot be used to
perform additional write operations or to contain a different database
structure than the primary.

Logical Replication

Logical replication works at the table or database It replicates changes to
individual tables (such as and DELETE operations) rather than at the
block level. Logical replication allows for more flexibility, including
replicating between different versions of PostgreSQL or between different
database structures. Replicas can be used for both read and write
operations on different tables. It allows you to replicate specific tables or
databases rather than the entire cluster. It has more overhead than physical
replication and can be more complex to set up and manage.

Synchronous vs. Asynchronous

When setting up streaming replication, you can choose between
synchronous and asynchronous replication modes. The key difference
between these modes lies in how they handle data consistency between the
primary and standby servers.

Asynchronous Replication

Asynchronous replication is the default and most common mode in
PostgreSQL. In this mode, the primary server does not wait for the
standby server to acknowledge that it has received the changes. Once the
changes are written to the WAL on the primary server, the primary
continues to operate without waiting for the standby. It offers better
performance because the primary server doesn’t need to wait for the
standby to acknowledge every transaction. There’s a potential for data loss
because, in the event of a failure, the most recent changes might not have
been replicated to the standby server.

Synchronous Replication

In synchronous replication, the primary server waits for confirmation from
the standby server before committing the transaction. This ensures that no
data is lost in case of failure, as the standby always has an up-to-date copy
of the data. It guarantees that all transactions are safely stored on both the
primary and standby, ensuring zero data loss in the event of failure. This
mode introduces as the primary server must wait for the standby to
acknowledge each transaction, potentially slowing down the system.

Configuring Streaming Replication

Now that we’ve covered the basic concepts, we can proceed to configure
streaming In this demonstration, we will set up physical streaming
replication using asynchronous mode (though switching to synchronous is
possible with minor changes).

System Setup

To understand the replication, we will configure two servers:

Primary server (192.168.1.10)
Standby server (192.168.1.11)

We will also use replication slots to ensure that the primary retains the
WAL files that the standby needs, even if the standby is temporarily
disconnected.

Configure Primary Server

Edit postgresql.conf

On the primary server, we need to enable replication settings in

sudo nano /etc/postgresql/13/main/postgresql.conf

Make the following changes:

listen_addresses = 'localhost,192.168.1.10' # Listen on the server's IP

wal_level = replica # Enable WAL for replication

max_wal_senders = 5 # Number of replication connections

wal_keep_size = 64MB # Retain WAL segments for
replication

archive_mode = on # Enable WAL archiving

archive_command = 'cp %p /var/lib/postgresql/wal_archive/%f'

These settings ensure that the primary server allows replication
connections and stores enough WAL files to maintain the replica’s
consistency.

Edit pg_hba.conf

The pg_hba.conf file controls access to the PostgreSQL cluster. To allow
replication connections, add the following entry:

sudo nano /etc/postgresql/13/main/pg_hba.conf

Add the following line to grant replication access to the standby server’s
IP:

host replication all 192.168.1.11/32 md5

This entry ensures that the standby server can connect to the primary for
replication purposes.

Create a Replication User

You’ll need to create a user on the primary server that will be used for
replication:

CREATE USER rep_user WITH REPLICATION ENCRYPTED
PASSWORD 'rep_password';

Create a Replication Slot

Replication slots ensure that the primary retains the necessary WAL files
until they are replicated, preventing data loss if the standby is temporarily
disconnected. Create a replication slot on the primary server:

SELECT * FROM pg_create_physical_replication_slot('standby_slot');

This command creates a physical replication slot named

Restart PostgreSQL

After making these changes, restart the PostgreSQL service on the primary
server:

sudo systemctl restart postgresql

Configure Standby Server

Next, we will configure the standby server to connect to the primary and
start receiving replicated data.

Stop PostgreSQL on the Standby

First, stop the PostgreSQL service on the standby server:

sudo systemctl stop postgresql

Copy the Data Directory from the Primary

To create a consistent starting point for replication, we need to copy the
data directory from the primary server to the standby. Use pg_basebackup
to copy the data directory:

pg_basebackup -h 192.168.1.10 -D /var/lib/postgresql/13/main -U
rep_user -P --wal-method=stream --slot=standby_slot

Here,

Specifies the IP of the primary server.
Specifies the data directory on the standby.
Uses the replication user created earlier.
Streams the WAL files while copying the data.
Uses the replication slot created earlier to maintain WAL file consistency.

Edit postgresql.conf

After copying the data directory, configure the standby server by
modifying

sudo nano /etc/postgresql/13/main/postgresql.conf

Add or modify the following settings:

hot_standby = on # Enable read queries on standby

primary_conninfo = 'host=192.168.1.10 port=5432 user=rep_user
password=rep_password'

primary_slot_name = 'standby_slot' # Use the replication slot

These settings ensure the standby server connects to the primary and uses
the correct replication slot for consistent data transfer.

Finally, start the PostgreSQL service on the standby server:

sudo systemctl start postgresql

The standby server will now connect to the primary server and begin
replicating data in real-time.

Verifying Streaming Replication

You can verify that streaming replication is working by checking the
replication status on the primary server.

For this, run the following query:

SELECT * FROM pg_stat_replication;

This query will show details of the connected standby servers, including
the state of replication and the lag between the primary and standby.

These steps set up streaming replication between a primary and a standby
PostgreSQL server using physical replication and asynchronous Here, we
also ensured data consistency with replication guaranteeing that no WAL
files are lost even if the standby falls behind.

Managing Replication

Once streaming replication is set up between a primary and one or more
standby servers, effective management is necessary to ensure that
replication works smoothly and that the standby servers remain in sync
with the primary. The replication delay occurs when the standby server
falls behind the primary due to high transaction throughput, network
latency, or resource limitations on the standby. Conflicts, on the other
hand, can happen when read queries on the standby conflict with the
replication process, such as when the standby tries to replay WAL changes
that affect data currently being queried.

Using the practical setup from the previous section, we will learn how to
monitor replication performance, manage delays, and resolve conflicts.

Monitoring Replication Performance

PostgreSQL provides several system views and functions to help track
replication health and performance.

Using ‘pg_stat_replication’

On the primary server, you can use the pg_stat_replication view to
monitor the state of replication. This view provides information about
connected standby servers, including the replication mode (synchronous
or asynchronous), the current WAL position, and any potential lag.

Now, run the following query on the primary server:

SELECT

 pid,

 usename AS user,

 application_name AS standby,

 state,

 sync_state,

 write_lag,

 flush_lag,

 replay_lag

FROM

 pg_stat_replication;

The write_lag, flush_lag, replay_lag columns show the amount of lag at
various stages of replication (writing WAL, flushing it to disk, and
replaying it on the standby). If any of these values are consistently high, it
indicates a replication delay.

Using ‘pg_stat_wal_receiver’

On the standby server, the pg_stat_wal_receiver view provides details
about the WAL receiver process, which handles streaming WAL data from
the primary server. It shows the current status of the replication and helps
in diagnosing delays.

To do this, run the following query on the standby server:

SELECT

 status,

 receive_start_lsn,

 receive_lsn,

 replay_lsn,

 last_msg_send_time,

 last_msg_receipt_time

FROM

 pg_stat_wal_receiver;

Here,

The last WAL log sequence number (LSN) received from the primary.

The last WAL LSN that has been replayed on the standby.
last_msg_send_time / These columns indicate the time of the last WAL
message sent from the primary and received by the standby.

If the difference between receive_lsn and replay_lsn is significant, it
suggests that the standby is falling behind in applying WAL changes,
leading to replication delay.

Managing Replication Delays

There are several strategies to mitigate replication delays. Following are:

Adjust WAL Settings

One of the most common causes of replication delays is insufficient WAL
retention on the primary server. If the primary server recycles or deletes
WAL files before the standby has a chance to process them, the standby
will fall behind and require a complete re-sync.

Ensure that the wal_keep_size parameter in the primary server's
postgresql.conf is set to an adequate value:

wal_keep_size = 256MB

This setting determines how many WAL files the primary should retain to
allow the standby to catch up during periods of high transaction activity.

Increase Max WAL Senders and WAL Buffers

If replication is delayed due to resource limitations on the primary server,
consider increasing the following parameters:

max_wal_senders

Controls the maximum number of simultaneous WAL sender processes. If
there are many standby servers or a high volume of transactions,
increasing this value ensures that enough WAL sender processes are
available for replication.

max_wal_senders = 10

wal_buffers

Defines the amount of shared memory allocated for WAL data before it’s
written to disk. Increasing this value can improve replication performance
during high transaction volumes.

wal_buffers = 16MB

Tune Standby for Performance

Replication delays can also occur on the standby server due to insufficient
resources, such as CPU, memory, or I/O performance. To optimize the
standby server’s configuration and assist in reducing the replication lag,
following can be done:

Increase work_mem and shared_buffers

These parameters control the amount of memory used for processing
queries and buffering data. Increasing their values allows the standby to
process incoming WAL data faster.

shared_buffers = 1GB

work_mem = 16MB

Enable read-only queries in parallel

By allowing parallel queries, the standby can handle more read requests
while still replaying WAL logs. To enable parallel processing, modify the
max_parallel_workers and max_parallel_workers_per_gather parameters.

max_parallel_workers = 4

max_parallel_workers_per_gather = 2

Implement WAL Archiving and Retention

If the standby regularly falls too far behind, causing WAL files to be
recycled, you may need to implement WAL archiving to ensure that the
necessary WAL segments are always available for replication.

To do this, enable WAL archiving and specify an archive command in the
postgresql.conf file on the primary server:

archive_mode = on

archive_command = 'cp %p /path/to/wal_archive/%f'

This ensures that even if the standby is temporarily disconnected, the
WAL files required to catch up will be saved and available for replay
when the standby reconnects.

Handling Replication Conflicts

Replication conflicts occur when the standby server is unable to apply
changes because of active queries on the standby. Let us consider if a read
query is holding a lock on a table, and the primary tries to replay a
DELETE operation on that table, the replication will fail until the query is
completed.

Monitor Replication Conflicts

You can monitor replication conflicts on the standby server using the
pg_stat_database_conflicts view:

SELECT

 datname,

 confl_lock,

 confl_snapshot,

 confl_bufferpin,

 confl_deadlock

FROM

 pg_stat_database_conflicts;

This view shows different types of conflicts:

Conflicts caused by locks held by standby queries.
Conflicts due to concurrent transactions trying to access inconsistent data
snapshots.
Conflicts caused by buffers pinned by standby queries.

Adjust ‘hot_standby_feedback’

To reduce the likelihood of replication conflicts, you can enable
hot_standby_feedback on the standby server. This setting informs the
primary server about the queries running on the standby, preventing the
primary from removing rows that are still being queried.

In the standby server’s add the following:

hot_standby_feedback = on

With this setting enabled, the primary server retains tuples that would
otherwise be deleted, reducing the chances of conflicts caused by
DELETE or UPDATE operations on the primary.

Setting Timeout for Conflict Resolution

If conflicts persist and you prefer to prioritize replication over read
queries, you can configure a timeout for queries on the standby. This will
automatically terminate long-running queries that conflict with WAL
replay, allowing replication to proceed.

In the standby server’s set the following parameters:

max_standby_streaming_delay = 30s

This setting allows queries on the standby to delay replication for a
maximum of 30 seconds. After this time, conflicting queries are
terminated to prioritize replication.

Failover and Switchover Procedures

In PostgreSQL streaming replication setups, failover and switchover are
two critical procedures used to maintain high availability. Failover occurs
when the primary server fails unexpectedly, and a standby server is
promoted to take over as the new primary. on the other hand, is a planned
process where the roles of the primary and standby servers are switched,
often for maintenance purposes or to redistribute load.

Here, we will cover how to promote a standby server to a primary server
during failover and how to reconfigure your applications and services to
point to the new primary. We will also cover how to perform a switchover
procedure to deliberately switch roles between the primary and standby
servers.

Failover

Failover occurs automatically or manually when the primary server
experiences a failure, and the standby must take over to minimize
downtime. In cases where automatic failover isn’t configured (or fails),
you need to manually promote the standby server to the primary. This
involves a few steps to ensure the standby is fully ready to take over as the
new primary as below:

Stop the Failed Primary

If the primary server is still running but isn’t functioning correctly, stop
the PostgreSQL service to prevent further issues:

sudo systemctl stop postgresql

Promote the Standby Server

On the standby server, use the pg_ctl command to promote it to the
primary:

pg_ctl promote -D /var/lib/postgresql/13/main

This command tells the standby server to stop replaying WAL logs and to
start accepting write transactions as the new primary.

Verify Promotion

After promoting the standby server, check that it is now running as the
primary by querying the pg_stat_wal_receiver view, which should no
longer be active since the server is no longer in standby mode:

SELECT * FROM pg_stat_wal_receiver;

If the query returns no rows, it means the server has successfully
promoted and is no longer receiving WAL data.

Automatic failover can be configured using third-party tools like or which
monitor the primary server’s health and automatically promote a standby
when needed. These tools also help in maintaining cluster consistency
during failover events.

When a failover occurs, one needs to reconfigure the applications and
services to point to the new primary server. Typically, applications are
configured to connect to the primary database using a connection string or
database URL. After a failover, this connection string must be updated to
reflect the new primary server.

Using Virtual IPs (VIPs)

One way to minimize application downtime during failover is to use a
Virtual IP (VIP) address that points to the current primary server. This
way, when failover occurs, you simply need to update the VIP to point to
the new primary, and applications won’t need to change their connection
strings.

Assign the VIP to the Standby

When the standby server is promoted to primary, assign the VIP to it. This
can be done using network commands like ip or

sudo ip addr add 192.168.1.50/24 dev eth0

The VIP (e.g., is now associated with the new primary server.

Update DNS or Load Balancers

If you are using DNS or a load balancer to direct traffic to the primary
server, you’ll need to update your DNS entries or load balancer
configuration to reflect the new primary’s IP address.

Updating Application Connection Strings

If you aren’t using VIPs, you’ll need to manually update your
applications’ database connection strings. This can be done in the
application’s configuration files or environment variables.

For example, if your application was connecting to the old primary using
this connection string:

jdbc:postgresql://192.168.1.10:5432/titanic_db

After failover, change it to point to the new primary:

jdbc:postgresql://192.168.1.11:5432/titanic_db

Alternatively, if you are using PostgreSQL connection pools like simply
reconfigure pgBouncer to connect to the new primary.

Switchover

A switchover is a controlled process where the roles of the primary and
standby servers are intentionally switched. This is often done for
maintenance or load balancing purposes, and it requires careful planning
to minimize downtime and ensure data consistency.

Switchover involves demoting the primary server to become a standby
and promoting the current standby to become the new primary.

Stop Write Transactions on the Primary

Before switching roles, ensure that no new write transactions are
occurring on the primary. This can be done by briefly stopping the
application or setting the database to read-only

ALTER SYSTEM SET default_transaction_read_only = 'on';

SELECT pg_reload_conf();

Promote the Standby

Promote the standby server to take over as the new primary:

pg_ctl promote -D /var/lib/postgresql/13/main

Reconfigure the Old Primary as the New Standby

After promoting the standby, the old primary needs to be reconfigured as a
standby server. First, stop the PostgreSQL service on the old primary:

sudo systemctl stop postgresql

Then, reconfigure it to connect to the new primary by editing

primary_conninfo = 'host=192.168.1.11 port=5432 user=rep_user
password=rep_password'

Finally, start the PostgreSQL service:

sudo systemctl start postgresql

The old primary will now act as a standby server, replaying WAL logs
from the new primary.

Just as in failover, you’ll need to update your applications and services to
point to the new primary. If you are using a VIP or load balancer, simply
update the VIP to point to the new primary. Otherwise, update your
application connection strings manually to reflect the new primary’s IP
address.

Summary

In summary, we covered the core practical aspects of streaming replication
and high availability, with a focus on replication setup, replication
management, and failover/switchover. The chapter began by
distinguishing between physical and logical replication, as well as
introducing the terms synchronous and asynchronous replication. We then
went through a hands-on demonstration of setting up streaming replication
between a primary and a standby server, configuring replication slots, and
ensuring that no data was lost during the replication process. We
introduced techniques like hot_standby_feedback and tuning WAL
retention settings to optimize replication performance and avoid conflicts.

Finally, we discussed failover and switchover procedures, such as moving
a standby server to primary in the event of a failure and switching roles
between servers for maintenance purposes. Making use of these
techniques, you learn through every step of setting up and maintaining a
highly available PostgreSQL system.

Chapter 9: Point-in-Time Recovery

Brief Overview

In this final chapter, we will go over PostgreSQL's ability to restore
databases to a specific historical point using its PITR feature. When it
comes to restoring databases following unforeseen incidents like system
crashes, accidental data loss, or corruption, this chapter is significant. We
start by learning about WAL archiving for PITR, which continuously
archives the database's WALs to preserve changes made after each
transaction.

Next, we learn to restore the database from a backup and replay the
archived WAL files to return it to a specific point in time. These concepts
will provide us with a thorough understanding of how PostgreSQL
protects data and provides powerful recovery tools for real-world disaster
scenarios.

WAL Archiving for PITR

PITR is a powerful feature in PostgreSQL that allows a database to be
restored to a specific point in time, rather than just to the time of the last
backup. This is especially useful when recovering from unintended
changes, such as a mistaken deletion of data or a software bug. PITR
works by using a combination of a base backup and the WAL that record
every transaction in the database.

The general process of PITR involves restoring the database from a base
backup and then replaying the WAL files generated after the backup to
restore the database to the desired state. WAL files are archived to ensure
that they can be used for recovery, even if the primary database is no
longer accessible. To achieve PITR, you must configure WAL archiving
on the primary server and properly manage the archived WAL files. This
ensures that you can recover your database to any point in time after the
base backup, provided the necessary WAL files are available.

Configuring WAL Archiving

To enable PITR in PostgreSQL, the first step is to configure WAL This
involves modifying PostgreSQL’s configuration file to ensure that WAL
segments are copied to a safe location, such as an external disk or cloud
storage, after each transaction. The key parameter that controls WAL
archiving is which defines the command that PostgreSQL will execute to
archive each WAL file once it is no longer needed for immediate use.

Editing ‘postgresql.conf’

To begin, locate and edit the postgresql.conf file, typically found in the
PostgreSQL data directory on Linux-based systems).

sudo nano /etc/postgresql/13/main/postgresql.conf

Search for the following parameters and modify them as necessary:

archive_mode = on

archive_command = 'cp %p /path/to/wal_archive/%f'

archive_timeout = 60

Creating Archive Directory

Next, create the directory where the WAL files will be stored. It is
important that this directory is on a secure and reliable storage system, as
the WAL files are critical for PITR.

sudo mkdir -p /backups/wal_archive/

sudo chown postgres:postgres /backups/wal_archive/

sudo chmod 700 /backups/wal_archive/

This directory will store the WAL segments generated after each
transaction. Make sure to monitor the available disk space, as WAL files
can grow significantly on busy systems.

Testing Archive Command

Before fully enabling WAL archiving, it is a good idea to test the
archive_command to ensure that WAL files can be successfully copied to
the archive location. You can do this by manually copying a WAL file
from the pg_wal directory to the archive directory:

cp /var/lib/postgresql/13/main/pg_wal/0000000100000000000000A1
/backups/wal_archive/

After running this command, verify that the file was successfully copied:

ls -l /backups/wal_archive/

If the file appears in the archive directory, the archive_command should
work as expected when PostgreSQL executes it automatically.

Next, once the postgresql.conf file has been modified, restart PostgreSQL
to apply the changes:

sudo systemctl restart postgresql

After the restart, PostgreSQL will begin archiving WAL files as they are
generated, using the command specified in

Managing Archived WAL files

After enabling WAL archiving, the archived WAL files must be managed
properly to ensure that they are available for recovery and do not consume
excessive storage. Management of WAL files involves ensuring they are
stored securely, periodically verifying their integrity, and implementing
retention policies to remove old or unnecessary WAL files.

Viewing Archived WAL files

You can verify that WAL archiving is functioning properly by checking
the contents of the archive directory:

ls -l /backups/wal_archive/

You should see a list of WAL files with names like etc. Each file
represents a WAL segment that records a portion of the transactions
committed to the database.

Implementing Retention Policies

Over time, archived WAL files can consume significant disk space,
especially on high-transaction systems. To manage disk usage, you should
implement retention policies to remove WAL files that are no longer
needed. This can be done manually or using scripts that periodically delete
old WAL files.

For example, you can use a simple cron job to delete WAL files older than
a certain number of days (e.g., 7 days):

crontab -e

Add the following line to remove WAL files older than 7 days every day
at midnight:

0 0 * * * find /backups/wal_archive/ -type f -mtime +7 -exec rm {} \;

This command will delete any file in the /backups/wal_archive/ directory
that is older than 7 days. Adjust the retention period to suit your needs
based on available storage and recovery requirements.

Verifying WAL file Integrity

It is important to ensure that archived WAL files remain uncorrupted, as
they are essential for point-in-time recovery. You can periodically verify
the integrity of the WAL files by using the pg_verify_checksums tool,
which checks for checksum errors in data files:

pg_verify_checksums -D /var/lib/postgresql/13/main/

This command ensures that the archived WAL files and other data files in
the PostgreSQL cluster are intact. If you encounter any errors, you should
dig into the issue and consider replacing any corrupted WAL files with a
backup copy.

Storing WAL files in a Remote Location

For added security and disaster recovery, it is a good idea to store archived
WAL files in a remote location, such as a network-attached storage (NAS)
system, cloud storage (e.g., Amazon S3), or a dedicated backup server.

To store WAL files on a remote server, modify the archive_command to
use a remote copy command such as scp or For example, to copy WAL
files to a remote backup server:

archive_command = 'rsync -a %p
backup_user@backupserver:/backups/wal_archive/%f'

This command uses rsync to securely transfer each WAL file to a remote
server for storage.

Performing Point-in-Time Recovery

PITR is especially useful in situations where a failure or unwanted change
occurs, and you need to recover the database to the state it was in just
before the event. PITR uses a combination of a base backup and the
archived WAL segments generated after the backup to restore the
database.

This section demonstrates how to perform a full PITR by first restoring
the base backup and then applying WAL segments up to a specific target
time.

Restoring from Base Backups

The first step in PITR is restoring the database to the point of the most
recent base This base backup provides a consistent starting point from
which the WAL logs can be replayed to reach the desired recovery point.

Preparing Base Backup

Before initiating the recovery, ensure that the base backup is available.
This backup is typically created using the pg_basebackup tool and stored
in a backup directory. The base backup contains all the data files and
transaction logs needed to start the recovery process.

Suppose the base backup has been stored in To restore the backup, the
following steps are required:

Stop PostgreSQL Server

To restore the database, first stop the running PostgreSQL instance on the
server:

sudo systemctl stop postgresql

Stopping the server ensures that no new transactions or data modifications
occur during the recovery process.

Remove Existing Data Directory

If the data directory already contains an existing database, you must
remove it to make way for the restored backup:

sudo rm -rf /var/lib/postgresql/13/main/*

Be careful when executing this command, as it permanently deletes the
current database files. Make sure you have valid backups before
proceeding.

Extract Base Backup

Next, restore the base backup into the PostgreSQL data directory. If the
base backup is compressed (e.g., in .tar.gz format), extract it:

tar -xzf /backups/base_backup/base.tar.gz -C /var/lib/postgresql/13/main/

This command extracts the base backup to the appropriate data directory.

Prepare WAL Replay

After the base backup is restored, PostgreSQL must be instructed to apply
the WAL files to replay the transactions. To do this, you’ll need to ensure
that the WAL files generated after the base backup are available for
recovery.

Copy the archived WAL files from the backup archive directory (in our
case, it is to the PostgreSQL pg_wal directory:

cp /backups/wal_archive/* /var/lib/postgresql/13/main/pg_wal/

These WAL files will be applied after the base backup to bring the
database to the desired state.

Applying WAL Segments

Once the base backup is restored, the next step is to apply the archived
WAL segments to the database. These logs contain all the changes that
occurred after the base backup was created, and replaying them allows the
database to be restored to any point in time.

Setting Recovery Target

To perform Point-in-Time PostgreSQL needs to know up to which point in
time it should replay the WAL logs. This is done by specifying a recovery
target in a configuration file.

In versions of PostgreSQL prior to 12, this is done in a file called In
PostgreSQL 12 and later, you set the recovery parameters directly in
wherein you edit the PostgreSQL configuration file to specify the recovery
target. Use a text editor like

sudo nano /var/lib/postgresql/13/main/postgresql.conf

Specify the Recovery Target Time

Add the following lines to specify the recovery target time. Replace
YYYY-MM-DD HH:MM:SS with the exact time to which you want to

recover the database:

restore_command = 'cp /backups/wal_archive/%f %p'

recovery_target_time = 'YYYY-MM-DD HH:MM:SS'

recovery_target_action = 'pause'

Here,

Specifies the command to restore the WAL files from the archive. This
command copies the necessary WAL segments from the archive directory
to the appropriate location in the PostgreSQL data directory.

Defines the exact point in time to which PostgreSQL should replay the
WAL logs. You can specify any time after the base backup was taken.
Tells PostgreSQL what to do after reaching the recovery target. Setting
this to pause allows you to inspect the state of the database after recovery.

After setting the recovery target, save the changes and close the file.

Starting PITR Process

With the base backup restored and the recovery target time configured,
restart the PostgreSQL server to begin the PITR process:

sudo systemctl start postgresql

Upon startup, PostgreSQL will automatically enter recovery mode and
begin replaying the archived WAL logs. The restore_command will be
executed for each WAL segment, allowing PostgreSQL to apply the
changes incrementally.

Monitoring Recovery Process

You can monitor the progress of the recovery by checking the PostgreSQL
logs. The logs will indicate which WAL files are being applied and
whether any issues have occurred during recovery.

To view the logs:

tail -f /var/log/postgresql/postgresql-13-main.log

The log file will show messages indicating that PostgreSQL is applying
WAL segments, and you will see entries like:

LOG: restored log file "0000000100000000000000A3" from archive

LOG: restored log file "0000000100000000000000A4" from archive

These entries confirm that PostgreSQL is successfully replaying the WAL
segments. The recovery process continues until all WAL files are applied,
or the recovery_target_time is reached.

Completing the Recovery

Once the recovery target time is reached, PostgreSQL will pause the
recovery process (as specified by recovery_target_action = At this point,
you can inspect the database to ensure that it has been restored to the
correct state.

If you are satisfied with the recovery, finalize the process by allowing
PostgreSQL to exit recovery mode and start accepting new transactions.
To do this, you can either:

Change the recovery_target_action to 'promote' in postgresql.conf, or
Use the pg_ctl promote command:

pg_ctl promote -D /var/lib/postgresql/13/main

This command promotes the database to the primary mode, allowing it to
accept new write transactions. At this point, PITR is complete, and the

database is fully operational at the desired point in time.

Verifying the Recovery

Once PostgreSQL has exited recovery mode, it's important to verify that
the recovery was successful and that the database is in the correct state.

Check the Database Logs

Review the PostgreSQL logs to ensure there were no errors during
recovery. Look for messages indicating that WAL segments were
successfully applied and that PostgreSQL has completed recovery.

Run SQL Queries

Run some SQL queries to verify that the data in the database is consistent
with the point in time to which you recovered. For example, check that
recent transactions are present and that any unwanted changes (e.g.,
accidental deletions) have been reverted.

SELECT * FROM passengers WHERE passenger_id = 1;

Check the Recovery Time

Confirm that the database has been restored to the correct recovery target
time by querying system views such as pg_stat_activity or checking the
timestamp of recent transactions.

Overall, PITR is an essential tool to recover from accidental data loss or
system failures. By archiving WAL files and applying them after restoring
a base backup, PostgreSQL allows for flexible and precise recovery to any
point in time. The process involves restoring the base backup, applying
the archived WAL files, and configuring the recovery target to replay
transactions up to the desired time.

Summary

We have now reached the chapter that discussed PITR. As a first step, we
established WAL archiving by directing the PostgreSQL server to save all
Write-Ahead Logs to an encrypted repository. In order to lay the
groundwork for PITR, the chapter continued by showing us how to restore
the database from a base backup. Applying the archived WAL files
brought the database to the desired point in time after the base backup was
restored. This was done by incrementally replaying transactions. To
pinpoint precisely when to terminate the recovery process, we made use of
recovery_target_time in the configuration file.

We then confirmed that PostgreSQL had left recovery mode and was once
again accepting transactions after the database recovery was successful.
By examining the database logs and querying the recovered data, we
additionally confirmed the recovery's accuracy. In this chapter, we have
covered all the bases when it comes to PostgreSQL's PITR functionality,
which guarantees data integrity and precise recovery in the event of an
accident.

Acknowledgement

I owe a tremendous debt of gratitude to GitforGits, for their unflagging
enthusiasm and wise counsel throughout the entire process of writing this
book. Their knowledge and careful editing helped make sure the piece was
useful for people of all reading levels and comprehension skills. In
addition, I'd like to thank everyone involved in the publishing process for
their efforts in making this book a reality. Their efforts, from copyediting
to advertising, made the project what it is today.

Finally, I'd like to express my gratitude to everyone who has shown me
unconditional love and encouragement throughout my life. Their support
was crucial to the completion of this book. I appreciate your help with this
endeavour and your continued interest in my career.

Thank You

Epilogue

I have successfully completed all the tasks I set out to do in PostgreSQL
17 QuickStart Pro. We have achieved a great deal together. We have
upgraded to PostgreSQL 17, and I can confirm that we have ensured
exceptional availability and data integrity. From the start, I knew
PostgreSQL could be a game-changer in how you approach database
management. I am pleased to have completed the entire cycle, chapter by
chapter, and to have revealed answers that are applicable in the real world.

I know it can be overwhelming when you're first learning how to set up
streaming replication, manage multiple clusters, or fine-tune performance.
I am here to reassure you that you can and will overcome these
challenges. Now that we have faced these challenges head-on, I am certain
you feel the same sense of relief I do, knowing you are fully ready to
tackle them on your own. You have the knowledge to maintain the
performance, security, and up-to-dateness of your systems. Furthermore,
you have the confidence to rapidly identify solutions to any issues that
may arise.

Going through point-in-time recovery and backups was absolutely crucial
to this strategy. When it comes to worst-case scenarios, it's natural to feel
fear. But it's also crucial to understand them. With WAL archiving and
recovery techniques, you'll never be caught off guard in a disaster.

You nailed the PostgreSQL 17 command. You can now manage your
database environments with ease, ensuring they're highly available and
efficient.

	Start

